Dicarbonyl stress: the hypothesis of cell damage in conditions of hypoxia. The trigger mechanism for the development of multiorgan dysfunction

V.V. Nikonov, S.V. Kursov, O.V. Biletskiy


Background. Various critical states of the body are often associated with the development of hypoxia, as a result of which the mechanisms of glycolysis are activated, under the influence of stress hormone release, hyperglycemia develops. It is shown that under the conditions of anaerobic glycolysis against a background of hyperglycemia, toxic compounds are produced in the cells, which cause the glycosylation of proteins and nucleic acids. Together with the violation of the cellular protein function, mitochondrial dysfunction develops, which leads to an energy deficiency and organ dysfunction. The aim of investigation was to identify the main mechanisms of dicarbonyl stress, their importance for the formation of critical states of the organism and determine the most promising methods of correction for specialists in the field of intensive care. Materials and methods. Detailed study of the results of modern scientific researches on the processes of carbohydrate metabolism in pathological conditions based on information provided on the Internet. Results. The leading role in the damage to the cellular structures of the body under dicarbonyl stress belongs to glyoxal and methylglyoxal. These substances are formed as by-products of anaerobic glycolysis. Increase in their synthesis is promoted by activation of anaerobic glycolysis and hyperglycemia. Dicarbonyl compounds enter into chemical reactions with amino groups of proteins, nucleic acids and other biologically active compounds, disrupting their functioning. Natural detoxification is carried out by the glyoxalase system with the participation of reduced glutathione, which is the main component of the antioxidant system. The increase in oxidative stress and the appearance of antioxidant deficiency cause an increase in the severity of lesions associated with increased production of glyoxal and methylglyoxal. Prevention of dicarbonyl stress is achieved by increasing the power of the antioxidant system, primarily by increasing the production of reduced glutathione. To neutralize toxic dicarbonyl metabolites, drugs that perform the function of “traps” can be used. The use of therapy aimed at eliminating mitochondrial dysfunction is promising. Conclusions. The emerging problem of damage to the body in conditions of dicarbonyl stress dictates the need for the analysis and reassessment of a variety of intensive care interventions. A detailed study of the characteristics of carbohydrate metabolism in various critical states, including determination of glyoxal and methylglyoxal concentration, monitoring the level of glycemia and clearance of lactate, together with a return to assessing the state of compensation of the prooxidant/antioxidant system of the body, is one of the promising directions for upcoming scientific research in the clinic. Specialists in intensive care face daily situations where dicarbonyl stress can act as one of the real mechanisms for the formation of organ, multi-organ dysfunction and predetermine the development of decompensation of vital functions. Learning to resist him is the actual immediate task.


dicarbonyl stress; anaerobic glycolysis; glyoxal; methylglyoxal; glutathione; antioxidant system; mitochondrial dysfunction


Lukyanova L.D., Kirova Y.I. Mitochondria-Controlled Signaling Mechanismsof Brain Protectionin Hypoxia [Electronic resource] / L.D. Lukyanova, Y.I. Kirova // Frontiersin Neuroscience. — 2015. — Vol. 9. — Article 320. — Access mode: https://pdfs.semanticscholar.org/afa0/4188911b94b9561da7f741a0c2c36d24e98c.pdf (last access: 24.03.17).

Wheaton W.W., Chandel N.S. Hypoxia 2: Hypoxia Regu­lates Cellular Metabolism / W.W. Weaton, N.S. Chandel // American Journal of Physiology: Cell Physiology. — 2011. — Vol. 300, № 3. — C. 385-393.

Solaina G., Baracca A., Lenaz G. et al. Hypoxia and Mitochondrial Oxidative Metabolism / G. Solaina, A. Baracca, G. Lenaz et al. // Biochimica et Biophysica Acta Bioenergetics. — 2010. — Vol. 1797, № 6–7. — P. 1171-1177.

Takagi H., Murase Y., Minami T. et al. Lactate Production and Clearance during High Intensity Swimming Test in Elite Water-Polo Players / H. Takagi, Y. Murase, T. Minami et al. // Bulletin of Faculty of Health and Sport Sciences. — 2013. — Vol. 36, № 1. — P. 77-84.

Melchiorri G.,Castagna C.,Sorge R. et al. Game Activity and Blood Lactate in Men's Elite Water-Polo Players / G. Melchiorri, C. Castanga, R. Sorge et al. // The Journal of Strength & Conditioning Research. — 2010. — Vol. 24, № 10. — P. 2647-2651.

Rapoport B.I. Metabolic Factors Limiting Performance in Marathon Runners [Electronic resource] / B.I. Rapoport // PLoS One; Computational Biology. — 2010. — Vol. 6, № 10. — e1000960. — Access mode: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000960 (last access: 24.03.17).

Van Bussel B.C.T., van der Poll M.C.G., Schalkwijk C.G. et al. Increased Dicarbonyl Stress as a Novel Mechanism of Multi-Organ Failure in Critical Illness / B.C.T. van Bussel, M.C.G. van der Poll, C.G. Schalkwijk et al. // International Journal of Molecular Sciences. — 2017. — Vol. 18. — P. 346.

Nigro C., Leone A., Raciti G.A. et al. Methylglyoxal-Glyoxalase 1 Balance: The Root of Vascular Damage / C. Nigro, A. Leone, G.A. Raciti et al. // International Journal of Molecular Sciences. — 2017. — Vol. 18. — P. 188.

Allaman I., Belanger M., Magistretti P.J. Methylglyoxal, the Dark Side of Glycolysis [Electronic resource] / I. Allaman, M. Belanger, P.J. Magistretti // Frontiers in Neuroscience. — 2015. — Vol. 9. — P. 23. — Access mode:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321437/ (last access: 24.03.17).

Rabbani N., Thornalley P.J. Dicarbonyl Stress in Cell and Tissue Dysfunction Contributing to Ageing and Disease / N. Rabbani, P.J. Thornalley // Biochemical and Biophysical Research Communications. — 2015. — Vol. 458, № 2. — P. 221-226.

Meertens J.H., Nienhuis H.L., Lefrandt J.D. et al. The Course of Skin and Serum Biomarkers of Advanced GlycationEndproducts and Its Association with Oxidative Stress, Inflammation, Disease Severity, and Mortality during ICU Admission in Critically Ill Patients: Results from a Prospective Pilot Study [Electronic resource] / J.H. Meertens, H.L. Nienhuis, J.D. Lefrandt et al. // PLoS One. — 2016. — Vol. 11, № 8. — e0160893. — Access mode: https://www.ncbi.nlm.nih.gov/pubmed/27529340 (last access: 31.03.17).

Vincent J.L., de Mendonca A., Cantraine F. et al. Use of the SOFA Score to Assess the Incidence of Organ Dysfunction/Failure in Intensive Care Units: Results of a Multicenter, Prospective Study. Working Group on «Sepsis-Related Problems» of the EuropeanSociety of Intensive Care Medicine / J.L. Vincent, A. de Mendonca, F. Cantraine et al. // Critical Care Medicine. — 1998. — Vol. 26. — P. 1793-1800.

Kawaguchi M., Shibata N., Horiuchi S. et al. Glyoxal Inactivates Glutamate Transporter-1 in Cultured Rat Astrocytes / M. Kawaguchi, N. Shibata, S. Shibata et al. // Neuropatho­logy. — 2005. — Vol. 25, № 1. — P. 27-36.

Могош Г. Острые отравления. Диагноз. Лечение: Пер. с рум. / Г. Могош — Бухарест: Медицинское издательство, 1984. — С. 452-453.

Lange J.N., Wood K.D., Knight J. et al. Glyo­xal Formation and Its Role in Endogenous Oxalate Synthesis [Electronic resource] / J.N. Lange, K.D. Wood, J. Knight et al. // Hindawi Publishing Corporation; Advances in Uro­logy. — 2012. — Vol. 2012. — ID 819202. — Access mode: doi:10.1155/2012/819202 (last access: 28.03.17).

Hansen F., de Souza D.F., SilveiraSda L. at al. Methylglyoxal Alters Glucose Metabolism and Increases AGEs Content in C6 Glioma Cells / F. Hansen, D.F. de Souza, L. SilveiraSda et al. // Metabolic Brain Disease. — 2012. — Vol. 27, № 4. — P. 531-539.

Di Loreto S., Zimmitti V., Sebastiani P. et al. Methylglyoxal Causes Strong Weakening of Detoxifying Capacity and Apoptotic Cell Death in Rat Hippocampal Neurons / S. Di Loreto, V. Zimmitti, P. Sebastiani et al. // The International Journal of Biochemistry & Cell Biology. — 2008. — Vol. 40, № 2. — P. 245-257.

Bélanger M., Yang J., Petit J.M. et al. System in Astrocyte-Mediated Neuroprotection / M. Belanger, J. Yang, J.M. Petit et al. // Journal of Neuroscience. — 2011. — Vol. 31, № 50. — P. 18338-18352.

Herrero-Mendez A., Almeida A., Fernández E. et al. The Bioenergetic and Antioxidant Status of Neurons Is Controlled by Continuous Degradation of a Key Glycolytic Enzyme by APC/C-Cdh1 / A. Herrero-Mendez, A. Almeida, E. Fernandez et al. // Nature Cell Biology. — 2009. — Vol. 11, № 6. — P. 747-752.

Campbell K., Vowinckel J., Keller M.A. et al. Methionine Metabolism Alters Oxidative Stress Resistance via the Pentose Phosphate Pathway / K. Campbell, J. Vowinckel, M.A. Keller et al. // Antioxidants & Redox Signaling. — 2016. — Vol. 24, № 10. — P. 543-547.

Luo S., Levine R.L. Methionine in Proteins Defends against Oxidative Stress / S. Luo, R.L. Levine // The FASEB Journal. — 2009. — Vol. 23, № 2. — P. 464-472.

Bianchi G., Brizi M., Rossi B. et al. Synthesis of Glutathione in Response to Methionine Load in Control Subjects and in Patients with Cirrhosis / G. Bianchi, M. Brizi, B. Rossi et al. // Metabolism. — 2000. — Vol. 49, № 11. — P. 1434-1439.

Rabbani N., Xue M., Thornalley P.J. Methylglyoxal-Induced Dicarbonyl Stress in Aging and Disease: First steps towards Glyoxalase 1-Based Treatments / N. Rabbani, M. Xue, P.J. Thornalley // Clinical Science. — 2016. — Vol. 130, № 19. — P. 1677-1696.

Celec P., Jurkovičová I., Buchta R. et al. Antioxidant Vitamins Prevent Oxidative and Carbonyl Stress in an Animal Model of Obstructive Sleep Apnea / P. Celec, I. Jurkovicova, R. Buchta et al. // Sleep and Breathing. — 2013. — Vol. 17, № 2. — P. 867-871.

Xiao H., Gu Z., Wang G. et al. The Possible Mechanisms Underlying the Impairment of HIF-1α Pathway Signaling in Hyperglycemia and the Beneficial Effects of Certain Therapies / H. Xiao, Z. Gu, G. Wang et al. // International Journal of Medical Sciences. — 2013. — Vol. 10, № 10. — P. 1412-1421.

Andersson D.A., Gentry C., Light E. et al. Methylglyo­xal Evokes Pain by Stimulating TRPA1 [Electronic resource] / D.A. Andersson, C. Gentry, E. Light et al. // PLoS One. — 2013. — Vol. 8, № 10. — e77986. — Access mode: doi: 10.1371/journal.pone.0077986 (last access: 31.03.17).

Seo K., Ki S.H., Shin S.M. Methylglyoxal Induces Mitochondrial Dysfunction and Cell Death in Liver / K. Seo, S.H. Ki, S.M. Shin // Toxicology Research. — 2014. — Vol. 30, № 3. — P. 193-198.

Suh K.S., Choi E.M., Rhee S.Y. et al. Methylglyoxal Induces Oxidative Stress and Mitochondrial Dysfunction in Osteoblastic MC3T3-E1 Cells [Electronic resource] / K.S. Suh, E.M. Choi, S.Y. Rhee et al. // Free Radical Research. — 2014. — Vol. 48, № 2. — P. 206-217. — Access mode: http://dx.doi.org/­10.3109/10715762.2013.859387 (last access: 31.03.17).

Wang H., Liu J., Wu L. Methylglyoxal-Induced Mitochondrial Dysfunction in Vascular Smooth Muscle Cells / H. Wang, J. Liu, L. Wu // Biochemical Pharmacology. — 2009. — Vol. 77, № 11. — P. 1709-1716.

Vanhorebeek I., Ellger B., De Vos R. et al. Tissue-Specific Glucose Toxicity Induces Mitochondrial Damage in a Burn Injury Model of Critical Illness / I. Vanhorebeek, B. Ellger, R. de Vos et al. // Critical Care Medicine. — 2009. — Vol. 37, № 4. — P. 1355-1364.

Chang T.J., Tseng H.C., Liu M.W. et al. Glucagon-Like Peptide-1 Prevents Methylglyoxal-Induced Apoptosis of Beta Cells through Improving Mitochondrial Function and Suppressing Prolonged AMPK Activation [Electronic resource] / T.J. Chang, H.C. Tseng, M.W. Liu et al. // Scientific Reports. — 2016. — Vol. 6. — Article 23403. — Access mode:http://www.nature.com/articles/srep23403 (last access: 31.03.17).

Hyman M. Glutathione: The Mother of All Antioxidants [Electronic resource] / M. Hyman // The Huffington Post. — Access mode: http://www.huffingtonpost.com/dr-mark-hyman/glutathione-the-mother-of_b_530494.html (last access: 31.03.17).

Ezhilarasan D., Karthikeyan S. Silibinin Alleviates N-nitrosodimethylamine-Induced Glutathione Dysregulation and Hepatotoxicity in Rats / D. Ezhilarasan, S. Karthikeyan // Chinese Journal of Natural Medicine. — 2016. — Vol. 14, № 1. — P. 40-47.

Li X., Zheng T., Sang S. et al. Quercetin Inhibits Advanced Glycation End Product Formation by Trapping Methyl­glyoxal and Glyoxal / X. Li, T. Zheng, S. Sang [et al.] // Journal of Agricultural and Food Chemistry. — 2014. — Vol. 62, № 50. — P. 12152-12158.

Zhang T., Mu Y., Yang M. et al. Catechin Prevents Methy­lglyoxal-Induced Mitochondrial Dysfunction and Apoptosis in EA.hy926 Cells / T. Zhang, Y. Mu, M. Yang et al. // Archives of Physiology and Biochemistry. — 2016. — Vol. 123, № 2. — P. 121-127.

Xue M., Weickert M.O., Qureshi S.A. et al. Improved Glycemic Control and Vascular Function in Overweight and Obese Subjects by Glyoxalase 1 Inducer Formulation [Electronic resource] / M.Xue, M.O.Weickert, S.A.Qureshi [et al.] // Diabetes; The University of Warwick. — Access mode: http://wrap.warwick.ac.uk/79041/3/WRAP_Thornalley_0670584-mv-120516-db16-0153.full.pdf (last access: 31.03.17).

Lambert E. Glucose Metabolism: Glycation and Methy­lation [Electronic resource] / E. Lambert // Realize Health. — Access mode: https://www.realizehealth.com.au/2015/08/18/glucose-metabolism-glycation-and-methylation/ (last access: 31.03.17).

Li Pun P.B., Logan A., Darley-Usmar V. et al. A Mitochondria-Targeted Mass Spectrometry Probe to Detect Glyoxals: Implications for Diabetes / P.B. Li Pun, A. Logan, V. Darley-Usmar et al. // Free Radical Biology and Medicine. — 2014. — Vol. 67, № 100. — P. 437-450.

DOI: https://doi.org/10.22141/2224-0586.4.83.2017.107428


  • There are currently no refbacks.

Copyright (c) 2017 EMERGENCY MEDICINE

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2017


 Яндекс.МетрикаSeo анализ сайта Рейтинг@Mail.ru