DOI: https://doi.org/10.22141/2224-0586.5.92.2011.143232

Clinical physiology and clinical pharmacology of modern fluid therapy of circulatory shock (literature review)

I.A. Yovenko, A.V. Tsarev, E.A. Kuzmova, V.Yu. Mynka, U.V. Selezneva

Abstract


The review of the literature presents modern views on the fluid therapy of circulatory shock. A physiological four-phase shock model and a revised Starling equation are described. The choice of solution for infusion, their dosage and duration of administration are given. Intensive care in patients with shock involves four phases of fluid therapy: 1) fluid resuscitation; 2) optimization of the volemic status; 3) stabilization of the volemic status; 4) evacuation of excessive fluid. During this therapy, it is necessary to answer four questions: 1) when to start intravenous fluid infusion? 2) when to stop intravenous fluid infusion? 3) when to start the de-escalation of fluid therapy or active fluid removal? 4) when to stop the de-escalation of the fluid therapy? To monitor the effectiveness of infusion therapy, it is possible to use static and dynamic markers of cardiac preload. For many of drugs for intravenous administration, the data from modern high-quality studies have been obtained that show the dangerous side effects of these agents and suggest a refusal or substantial restriction of their further use. Fluid overload and tissue edema during intensive care of emergency conditions can cause significant harm to patients. These findings are a strong argument in favor of a restrictive fluid therapy strategy that can improve the outcomes of treatment in critical patients. The administration of fluid therapy in patients with shock requires taking into account the composition, pharmacodynamic and pharmacokinetic properties of infusion fluid. In clinical practice, it is necessary to consider four “D” of fluid therapy: drug, dosing, duration and de-escalation.

Keywords


shock; physiology; fluid therapy; literature review

References


Latta T. Injections into the veins in cholera // London Med. Gaz. — 1832. — 379-382.

Finfer S., Myburgh J., Bellomo R. Intravenous fluid therapy in critically ill adults // Nature Reviews Nephrology — 2018. — 14. — 541-557.

Malbrain M., Van Regenmortel N., Saugel B. et al. Рrinciples of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy // Ann. Intensive Care. — 2018. — 8(1) — 66.

Cecconi M. et al. Fluid challenges in intensive care: the FENICE study: a global inception cohort study // Intensive Care Med. — 2015. — 41. — 1529-1537.

Finfer S. et al. Resuscitation fluid use in critically ill adults: an international cross-sectional study in 391 intensive care units // Crit. Care. — 2010. — 14. — 185.

Hammond N.E. et al. Patterns of intravenous fluid resuscitation use in adult intensive care patients between 2007 and 2014: an international crosssectional study // PLoS ONE. 2017. — 12. — e0176292.

Boulain T. et al. Volume expansion in the first 4 days of shock: a prospective multicentre study in 19 French intensive care units // Intensive Care Med. — 2014. — 41. — 248-256.

Miller T.E., Bunke M., Nisbet P. et al. Fluid resuscitation practice patterns in intensive care units of the USA: a cross- sectional survey of critical care physicians // Perioper. Med. (Lond.) — 2016. — 5. — 15.

Vincent J.L., DeBacker D. Circulatory shock // N. Engl. J. Med. — 2013. — 369. — 1726-1734.

Aya H.D., Rhodes A., Chis Ster I. et al. Hemodynamic effect of different doses of fluids for a fluid challenge: a quasi-randomized controlled study // Crit. Care Med. — 2017. — 45(2). — 161-8.

Monnet X., Teboul J.L. Passive leg raising: five rules, not a drop of fluid! // Cri Care. — 2015. — 19. — 18.

Monnet X., Marik P., Teboul J.L. Prediction of fluid responsiveness: an update // Ann. Intensive Care. — 2017. — 6(1). — 111.

Jozwiak M., Depret F., Teboul J.L. et al. Predicting fluid responsiveness in critically ill patients by using combined end-expiratory and end-inspiratory occlusions with echocardiography // Crit. Care Med. — 2017. — 45(11). — 1131-8.

Cordemans C., De Laet I., Van Regenmortel N. et al. ­Aiming for a negative fluid balance in patients with acute lung injury and increased intra-abdominal pressure: a pilot study looking at the effects of PAL-treatment // Ann. Intensive Care. — 2012. — 2 (Suppl. 1). — 15.

Cordemans C., De Laet I., Van Regenmortel N. et al. Fluid management in critically ill patients: the role of extravascular lung water, abdominal hypertension, capillary leak and fluid balance // Annals Intensive Care. — 2012. — 2 (Suppl. 1). — 1.

Malbrain M.L., Marik P.E., Witters I. et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice // Anaesthesiol Intensive Ther. — 2014. — 46 (5). — 361-80.

Myburgh J.A., Mythen M.G. Resuscitation fluids // N. Engl. J. Med. — 2013. — 369. — 1243-1251.

Funk D.J., Jacobsohn E., Kumar A. The role of venous return in critical illness and shock — part I: physiology // Crit. Care Med. — 2013. — 41. — 255-262.

Funk D.J., Jacobsohn E., Kumar A. Role of the venous return in critical illness and shock: part II — shock and mechanical ventilation // Crit. Care Med. — 2013. — 41. — 573-579.

Persichini R. et al. Effects of norepinephrine on mean systemic pressure and venous return in human septic shock // Crit. Care Med. — 2012. — 40. — 3146-3153.

Scheeren T.W., Vos J.J. Good old physiology in a modern jacket // Crit. Care Med. — 2012. — 40. — 3309-3311.

McLean A.S. Echocardiography in shock management // Crit. Care — 2016. — 20. — 275.

Woodcock T.E., Woodcock T.M. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy // Br. J. Anaesth. — 2012. — 108. — 384-394.

Starling E.H. On the absorption of fluids from the connective tissue spaces // J. Physiol. — 1896. — 19. — 312-326.

Levick J.R., Michel C.C. Microvascular fluid exchange and the revised Starling principle // Cardiovasc. Res. — 2010. — 87. — 198-210.

Lukasz A. et al. Endothelial glycocalyx breakdown is mediated by angiopoietin-2 // Cardiovasc. Res. — 2017. — 113. — 671-680.

Curry F.E. Layer upon layer: the functional consequences of disrupting the glycocalyx-endothelial barrier in vivo and in vitro // Cardiovasc. Res. — 2017. — 113. — 559-561.

Rabelink T.J., de Zeeuw D. The glycocalyx — linking albuminuria with renal and cardiovascular disease // Nat. Rev. Nephrol. — 2015. — 11. — 667-676.

Yunos N.M., Bellomo R., Story, D. et al. Bench-to-bedside review: chloride in critical illness // Crit. Care. — 2010. — 14. — 226-226.

Kellum J.A., Song M., Venkataraman R. Effects of hyperchloremic acidosis on arterial pressure and circulating inflammatory molecules in experimental sepsis // Chest. — 2004. — 125. — 243-248.

Shaw A.D. et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte // Ann. Surg. — 2012. — 255. — 821-829.

Yunos N.M. et al. Association between a chlorideliberal versus chloride- restrictive intravenous fluid administration stra-tegy and kidney injury in critically ill adults // JAMA. — 2012. — 308. — 1566-1572.

Young P. et al. Effect of a buffered crystalloid solution versus saline on acute kidney injury among patients in the intensive caxare unit: the SPLIT randomized clinical trial // JAMA. — 2015. — 314. — 1701-1710.

Self W.H. et al. Balanced crystalloids versus saline in noncritically ill adults // N. Engl. J. Med. — 2018. — 378. — 819-828.

Semler M.W. et al. Balanced crystalloids versus saline in critically ill adults // N. Engl. J. Med. — 2018. — 378. — 829-839.

Bampoe S. et al. Perioperative administration of buffered versus non- buffered crystalloid intravenous fluid to improve outcomes following adult surgical procedures // Cochrane Database Syst. Rev. — 2017. — 9. — CD004089.

Harris T., Thomas G.O., Brohi K. Early fluid resuscitation in severe trauma // BMJ. — 2007. — 345. — e 5752.

The SAFE Study Investigators et al. Saline or albumin for fluid resuscitation in patients with traumatic brain injury // N. Engl. J. Med. — 2007. — 357. — 874-884.

Cooper D.J. et al. Prehospital hypertonic saline resuscitation of patients with hypotension and severe traumatic brain injury: a randomized controlled trial // JAMA. — 2004. — 291. — 1350-1357.

Morgan T.J. The ideal crystalloid — what is ‘balanced’? // Curr. Opin. Crit. Care. — 2013. — 19. — 299-307.

Myburgh J.A. et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care // N. Engl. J. Med. — 2012. — 367. — 1901-1911.

Gan T.J. et al. Hextend, a physiologically balanced plasma expander for large volume use in major surgery: a randomized phase III clinical trial. Hextend Study Group // Anesth. Analg. — 1999. — 88. — 992-998.

Perner A. et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis // N. Engl. J. Med. — 2012. — 367. — 124-134.

Finfer S. et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit // N. Engl. J. Med. — 2004. — 350. — 2247-2256.

Caironi P. et al. Albumin replacement in patients with severe sepsis or septic shock // N. Engl. J. Med. — 2014. — 370. — 1412-1421.

Charpentier J., Mira J. Efficacy and tolerance of hyperoncotic albumin administration in septic shock patients: the EARSS study [abstract] // Intensive Care Med. — 2011. —

(Suppl. 1). — 115-0438.

Caironi P., Gattinoni L. The clinical use of albumin: the point of view of a specialist in intensive care // Blood Transfus. — 2009. — 7. — 259-267.

Cooper D.J. et al. Albumin resuscitation for traumatic brain injury: is intracranial hypertension the cause of increased mortality? // J. Neurotrauma. — 2013. — 30. — 512-518.

The SAFE Study Investigators et al. Effect of baseline serum albumin concentration on outcome of resuscitation with albumin or saline in patients in intensive care units: analysis of data from the saline versus albumin fluid evaluation (SAFE) study // BMJ. — 2006. — 333. — 1044-1046.

Finfer S. et al. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis // Intensive Care Med. — 2011. — 37. — 86-96.

Guevara M. et al. Albumin for bacterial infections other than spontaneous bacterial peritonitis in cirrhosis. A randomized, controlled study // J. Hepatol. — 2012. — 57. — 759-765.

Martin G.S. et al. Albumin and furosemide therapy in hypoproteinemic patients with acute lung injury // Crit. Care Med. — 2002. — 30. — 2175-2182.

Martin G.S. et al. A randomized, controlled trial of furosemide with or without albumin in ypoproteinemic patients with acute lung injury // Crit. Care Med. — 2005. — 33. — 1681-1687.

Brunkhorst F.M. et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis // N. Engl. J. Med. — 2008. — 358. — 125-139.

Schortgen F. et al. Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study // Lancet. — 2001. — 357. — 911-916.

Mutter T.C., Ruth C.A., Dart A.B. Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function // Cochrane Database Syst. Rev. — 2013 — 7. — CD007594.

Schick M.A. et al. The impact of crystalloid and colloid infusion on the kidney in rodent sepsis // Intensive Care Med. — 2010. — 36. — 541-548.

Wiedermann C.J., Joannidis M. Accumulation of hydroxyethyl starch in human and animal tissues: a systematic review // Intensive Care Med. — 2014. — 40. — 160-170.

Zarychanski R. et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis // JAMA. — 2013. — 309. — 678-688.

Cittanova M.L. et al. Effect of hydroxyethylstarch in brain-dead kidney donors on renal function in kidneytransplant recipients // Lancet. — 1996. — 348. — 1620-1622.

Annane D. et al. Effects of fluid resuscitation with colloids versus crystalloids on mortality in critically ill patients presen­ting with hypovolemic shock: the CRISTAL randomized trial // JAMA. — 2013. — 310. — 1809-1817.

Ertmer C., Annane D., Van Der Linden P. Is the literature inconclusive about the harm from HES? Yes // Intensive Care Med. — 2017. — 43. — 1520-1522.

European Medicines Agency. Hydroxyethyl-starch solutions (HES) should no longer be used in patients with sepsis or burn injuries or in critically ill patients // EMA. — 2014. — http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Solutions_for_infusion_containing_hydroxyethyl_starch/European_Commission_final_decision/WC500162361.pdf

US Food and Drug Administration. Vouluven (6% Hydroxyethyl starch 130/0.4 in 0.9% sodium chloride injection), for administration by intravenous infusion // FDA. — 2007. — https://www.fda.gov/downloads/biologicsbloodvaccines/bloodbloodproducts/approvedproducts/newdrugapplicationsndas/ucm083138.pdf

European Medicines Agency. Hydroxyethyl-starch solutions for infusion to be suspended — CMDh endorses PRAC recommendation: suspension due to serious risks of kidney injury and death in certain patient populations // EMA. — 2018. — http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2018/01/news_detail_002892.jsp&mid=WC0b01ac058004d5c1

Moeller C. et al. How safe is gelatin? A systematic review and meta-analysis of gelatin- containing plasma expanders versus crystalloids and albumin // J. Crit. Care. — 2016. — 35. — 75-83.

Perel P., Roberts I., Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients // Cochrane Database Syst. Rev. — 2013. — 2. — CD000567.

Sakr Y., Rubatto Birri P.N., Kotfis K. et al. // Higher fluid balance increases the risk of death from sepsis: results from a large international audit // Crit. Care Med. — 2017. — 45(3). — 386-94.

O’Connor M.E., Prowle J.R. Fluid overload // Crit. Care Clin. — 2015. — 31(4). — 803-2.

Benes J., Kirov M., Kuzkov V. et al. Fluid therapy: double-edged sword during critical care? // Biomed Res Int. — 2015. — 729075.

Glassford N.J. et al. Defining the characteristics and expectations of fluid bolus therapy: a worldwide perspective // J. Crit. Care. — 2016. — 35. — 126-132.

Levy M.M., Evans L.E., Rhodes A. The surviving sepsis campaign bundle: 2018 update // Crit. Care Med. — 2018. — 46. — 997-1000.

Chowdhury A.H., Cox E.F., Francis S.T. et al. A randomi-

zed, controlled, double- blind crossover study on the effects of 2-l infusions of 0.9% saline and Plasma-Lyte 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers // Ann. Surg. — 2012. — 256. — 18-24.

Hjortrup P.B. et al. Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel- group, multicentre feasibility trial // Intensive Care Med. — 2016. — 42. — 1695-1705.

PRISM Investigators et al. Early goal-directed therapy for septic shock — a patient- level meta-analysis // N. Engl. J. Med. — 2017. — 376. — 2223-2234.

Andrews B. et al. Effect of an early resuscitation protocol on in- hospital mortality among adults with sepsis and hypotension: a randomized clinical trial // JAMA. — 2017. — 318. — 1233-1240.

Myles P.S. et al. Restrictive versus liberal fluid therapy for major abdominal surgery // N. Engl. J. Med. — 2018. — 378. — 2263-2274.

Moritz M.L., Ayus J.C. Maintenance intravenous fluids in acutely ill patients // N. Engl. J. Med. — 2015. — 373(14). — 1350-60.

Zampieri F.G. et al. Study protocol for the Balanced Solution Versus Saline in Intensive Care Study (BaSICS): a factorial randomised trial // Crit. Care Resusc. — 2017. — 19. — 175-182.

Hammond N.E. et al. The Plasma-Lyte 148 vs Saline (PLUS) study protocol: a multicentre, randomised controlled trial of the effect of intensive care fluid therapy on mortality // Crit. Care Resusc. — 2017. — 19. — 239-246.

Myburgh J. Patient- centered outcomes and resuscitation fluids // N. Engl. J. Med. — 2018. — 378. — 862-863.

Kellum J.A. Abnormal saline and the history of intravenous fluids // Nat. Rev. Nephrol. — 2018. — 14. — 358-360.

Malbrain M.L., Van Regenmortel N., Owczuk R. It is time to consider the four D’s of fluid management // Anaesthesiol Intensive Ther. — 2015. — 47. — 1-5.

Monnet X., Marik P.E., Teboul J.L. Prediction of fluid responsiveness: an update // Ann Intensive Care. — 2016. — 6 (1). — 111.




Copyright (c) 2018 EMERGENCY MEDICINE

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2018

 

   Seo анализ сайта