Оptimal strategy of perioperative infusion: pros and cons

O.V. Kravets, O.M. Klygunenko


Treatment of abdominal pathology in 80 % cases is conducted surgically. According to the data of the Natio­nal Confidential Enquiry into Patient Outcome and Death (NCEPOD, 2016), postoperative lethality at non-urgent surgical interventions makes up 4 %, in urgent surgery ranges from 19.7 to 23.1 %. Perioperative fluid therapy is a dynamic process of perioperative eradication of hypovolemia, intra-operative support of effective volume of circulatory blood and its postoperative stabilizing. The liberal mode of periope­rative fluid therapy is directed to achieve the hypervolemic hemodilution, is characterized by positive water balance and forms acute hypervolemia, causes the threat of development of interstitial edema of tissues, multiple organ dysfunction of failure. Restrictive mode of fluid therapy allows eradicate hypovolemia under the conditions of normovolemia or “zero water balance”, reduces the threat of surplus liquid, deve­lopment of interstitial edema and multiple organ dysfunction or failure, reduces the number of postoperative complications, period of gastrointestinal tract recovery, duration of in-hospital treatment of patients. The targeted mode of fluid therapy optimizes tissue perfusion by a target management of hemodynamic parameters, reduces duration of in-hospital treatment of patients and level of lethality allowing to support the patient’s growing requirement in oxygen. The analysis of literature data showed absence of the concerted recommendations and algorithms on relatively objective prescriptions to the certain mode of fluid therapy depending on a surgical risk and urgency of surgical intervention, calculation of necessary volume of fluid therapy regarding the stage of perioperative period.


perioperative fluid therapy; liberal mode; restrictive mode; targeted mode; review


Weiser T.G., Haynes A.B., Molina G., Lipsitz S.R., Esquivel M.M., Uribe-Leitz T. et al. Estimate of the global volume of surgery in 2012: An assessment supporting improved health outcomes // Lancet. 2015; 385 (Suppl. 2): S11.

Pearse R.M., Harrison D.A., James P., Watson D., Hinds C., Rhodes A. et al. Identification and characterisation of the high-risk surgical population in the United Kingdom // Crit. Care. 2006; 10: R81.

Pearse R.M., Moreno R.P., Bauer P., Pelosi P., Metnitz P., Spies C. et al. Mortality after surgery in Europe: A 7 day cohort study // Lancet. 2012; 380: 1059-65.

Khuri S.F., Henderson W.G., DePalma R.G., Mosca C., Healey N.A., Kumbhani D.J. Participants in the VA National Surgical Quality Improvement Program. Determinants of long-term survival after major surgery and the adverse effect of postoperative complications // Ann. Surg. 2005; 242: 326-41.

Bellamy M.C. Wet, dry or something else? // Br. J. Anaesth. 2006; 97: 755-7.

Cannesson M., Gan T.J. Pro: Peri-operative goal directed therapy is an essential part of an enhanced recovery protocol // Int. Anaesth. Res. Soc. 2016; 122: 1258-60.

Voldby A.W., Brandstrup B. Fluid therapy in the periope­rative setting — A clinical review // J. Intensive Care. 2016; 4: 27.

Edwards M.R., Mythen M.G. Fluid therapy in critical illness // Extrem. Physiol. Med. 2014; 3: 16.

Serpa Neto A., Veelo D.P., Peireira V.G., de Assunção M.S., Manetta J.A., Espósito D.C. et al. Fluid resuscitation with hydroxyethyl starches in patients with sepsis is associated with an increased incidence of acute kidney injury and use of renal replacement therapy: A systematic review and meta-analysis of the literature // J. Crit. Care. 2014; 29: 185.e1-7.

Perel P., Roberts I., Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients // Cochrane Database Syst. Rev. 2013 CD000567.

McCluskey S.A., Karkouti K., Wijeysundera D., Minko­vich L., Tait G., Beattie W.S. Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: A propensity-matched cohort study // Anesth. Analg. 2013; 117: 412-21.

Sweeney R.M., McKendry R.A., Bedi A. Perioperative intravenous fluid therapy for adults // Ulster. Med. J. 2013; 82: 171-8.

Alves D.R., Ribeiras R. Does fasting influence preload responsiveness in ASA 1 and 2 volunteers? // Braz. J. Anesthesiol. 2017; 67: 172-9.

Aditianingsih D., George Y.W. Guiding principles of fluid and volume therapy // Best. Pract. Res. Clin. Anaesthesiol. 2014; 28: 249-60.

Vaara S.T., Korhonen A.M., Kaukonen K.M., Nisula S., Inkinen O., Hoppu S. et al. Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: Data from the prospective FINNAKI study // Crit. Care. 2012; 16: R197.

Holte K., Foss N.B., Andersen J., Valentiner L., Lund C., Bie P. et al. Liberal or restrictive fluid administration in fast-track colonic surgery: A randomized, double-blind study // Br. J. Anaesth. 2007; 99: 500-8.

Cecconi M., Corredor C., Arulkumaran N., Abuella G., Ball J., Grounds R.M. et al. Clinical review: Goal-directed therapy-what is the evidence in surgical patients? The effect on different risk groups // Crit. Care. 2013; 17: 209.

Shoemaker W.C., Appel P.L., Kram H.B., Waxman K., Lee T.S. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients // Chest. 1988; 94: 1176-86.

Hayes M.A., Timmins A.C., Yau E.H., Palazzo M., Hinds C.J., Watson D. Elevation of systemic oxygen delivery in the treatment of critically ill patients // N. Engl. J. Med. 1994; 330: 1717-22.

Hamilton M.A., Cecconi M., Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in mode­rate and high-risk surgical patients // Anesth. Analg. 2011; 112: 1392-402.

Pearse R., Dawson D., Fawcett J., Rhodes A., Grounds R.M., Bennett E.D. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445] // Crit. Care. 2005; 9: R687-93.

Lobo S.M., Ronchi L.S., Oliveira N.E., Brandão P.G., Froes A., Cunrath G.S. et al. Restrictive strategy of intraoperative fluid maintenance during optimization of oxygen delivery decrea­ses major complications after high-risk surgery // Crit. Care. 2011; 15: R226.

Rhodes A., Cecconi M., Hamilton M., Poloniecki J., Woods J., Boyd O. et al. Goal-directed therapy in high-risk surgical patients: A 15-year follow-up study. Intensive // Care Med. 2010; 36: 1327-32.

Arulkumaran N., Corredor C., Hamilton M.A., Ball J., Grounds R.M., Rhodes A. et al. Cardiac complications associated with goal-directed therapy in high-risk surgical patients: A meta-analysis // Br. J. Anaesth. 2014; 112: 648-59.

Challand C., Struthers R., Sneyd J.R., Erasmus P.D., Mellor N., Hosie K.B. et al. Randomized controlled trial of intraoperative goal-directed fluid therapy in aerobically fit and unfit patients having major colorectal surgery // Br. J. Anaesth. 2012; 108: 53-62.

Pearse R.M., Harrison D.A., MacDonald N., Gillies M.A., Blunt M., Ackland G. et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: A randomized clinical trial and systematic review // JAMA. 2014; 311: 2181-90.

Pestaña D., Espinosa E., Eden A., Nájera D., Collar L., Aldecoa C. et al. Perioperative goal-directed hemodynamic optimization using noninvasive cardiac output monitoring in major abdominal surgery: A prospective, randomized, multicenter, pragmatic trial: POEMAS Study (PeriOperative goal-directed thErapy in Major Abdominal Surgery) // Anesth. Analg. 2014; 119: 579-87.

Cove M.E., Pinsky M.R. Perioperative hemodynamic monitoring // Best Pract. Res. Clin. Anaesthesiol. 2012; 26: 453-62.

Cecconi M., Parsons A.K., Rhodes A. What is a fluid challenge? // Curr. Opin. Crit. Care. 2011; 17: 290-5.

Marik P.E. Noninvasive cardiac output monitors: A sta­te-of the-art review // J. Cardiothorac. Vasc. Anesth. 2013; 27: 121-34.

Waldron N.H., Miller T.E., Thacker J.K., Manchester A.K., White W.D., Nardiello J. et al. A prospective comparison of a noninvasive cardiac output monitor versus esophageal Doppler monitor for goal-directed fluid therapy in colorectal surgery patients // Anesth. Analg. 2014; 118: 966-75.

Patterson S.W., Piper H., Starling E.H. The regulation of the heart beat // J. Physiol. 1914; 48: 465-513.

Maas J.J. Mean systemic filling pressure: Its measurement and meaning // Neth. J. Crit. Care. 2015; 19: 6-11.

Bayliss W.M., Starling E.H. Observations on venous pressures and their relationship to capillary pressures // J. Physiol. 1894; 16: 159-318.

Guyton A.C. Determination of cardiac output by equating venous return curves with cardiac response curves // Physiol. Rev. 1955; 35: 123-9.

Cecconi M., Aya H.D., Geisen M., Ebm C., Fletcher N., Grounds R.M. et al. Changes in the mean systemic filling pressure during a fluid challenge in postsurgical intensive care patients // Intensive Care Med. 2013; 39: 1299-305.

Myatra S.N., Prabu N.R., Divatia J.V., Monnet X., Kulkarni A.P., Teboul J.L. The changes in pulse pressure variation or stroke volume variation after a “tidal volume challenge” reliably predict fluid responsiveness during low volume ventilation // Crit. Care Med. 2017; 45: 415-21.

Michard F., Teboul J.L. Predicting fluid responsiveness in ICU patients: A critical analysis of the evidence // Chest. 2002; 121: 2000-8.

Cecconi M., Hofer C., Teboul J.L., Pettila V., Wilkman E., Molnar Z. et al. Fluid challenges in intensive care: The FENICE study: A global inception cohort study // Intensive Care Med. 2015; 41: 1529-37.

Aya H.D., Rhodes A., Chis Ster I., Fletcher N., Grounds R.M., Cecconi M. Hemodynamic effect of different do­ses of fluids for a fluid challenge: A quasi-randomized controlled study // Crit. Care Med. 2017; 45: e161-8.

Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation // Crit. Care. 2015; 19 (Suppl. 3): S8.

Jhanji S., Vivian-Smith A., Lucena-Amaro S., Watson D., Hinds C.J., Pearse R.M. Haemodynamic optimisation improves tissue microvascular flow and oxygenation after major surgery: A randomised controlled trial // Crit. Care. 2010; 14: R151.

Pranskunas A., Koopmans M., Koetsier P.M., Pilvinis V., Boerma E.C. Microcirculatory blood flow as a tool to select ICU patients eligible for fluid therapy // Intensive Care Med. 2013; 39: 612-9.

Copyright (c) 2019 EMERGENCY MEDICINE

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2020


   Seo анализ сайта