Oxidative stress as a non-specific factor of organ damage pathogenesis (review of literature and own data)

V.I. Lysenko


The review highlights current literature and our own researches in the field of clinical medicine and biology of the molecular mechanisms of oxidative stress, its role in the pathogenesis of many diseases and organ damages. New data on general bio­logical patterns of cell, organ, or organism death as a whole are presented. One of the central non-specific mechanisms of stress injury has been found to be the stimulation of free-radical processes as a result of the frequent concomitant hypoxemia/hypo­xia and the prooxidant effects of catecholamines. The causes and mechanisms of disturbances of redox reactions in the respiratory chain of mitochondria are revealed. It has been found that redox reactions in mitochondrial membranes are clearly regulated by genes locally. Respiratory unbundling is associated not only with mechanical damage to the membrane, but also with the action of a number of poisonous substances, bacterial toxins and drugs on this process. The dependence of the total respiratory rate and the limit of aerobic performance are considered. An important role is played by the self-regulating, so-called quasi-closed system of the body, which works against entropy. In clinical studies, the pathways of catastrophic accumulation of free radicals and cytotoxic metabolites of their catabolism, the triggering mechanisms of oxidative stress and its role in the development of apoptosis and severe postoperative complications have been established. A decrease in the activity of endogenous aldehyde catabolism enzymes in tissues and subcellular fractions reduces the adaptive capacity of the body. Determination of the level of catabolism enzymes of endogenous aldehydes can serve as one of the criteria for the severity of stress and mitochondrial dyshomeostasis in critical conditions. The role of oxidase and oxygenase oxidation in microsomes during hypoxemia/hypoxia and exposure to xenobiotics is indicated. Data on the regulatory and adaptive effect of free radical products (reactive oxygen species and nitrogen) on the regulation of gene expression and increased production of antistress proteins, stimulation of mitochondrial biogenesis and normalization of energy metabolism are presented. Attention is drawn to the causes of the insufficient clinical effectiveness of the antioxidants used and the pathways of metabolic adaptation in critical conditions.


free radicals; hypoxia; mitochondria; oxidative stress; apoptosis; organ damages; review


Зоров Д.Б., Плотников Е.Ю., Янкаускас С.С. и др. Феноптозная проблема: от чего гибнет организм? Уроки по почечной недостаточности. Биохимия. 2013. Т. 77. № 7. С. 893-906.

Губский Ю.И. Токсическая гибель клетки: свободно-радикальное повреждение ДНК и апоптоз. Лікування та діагностика. 2001. № 4. С. 8-13.

Chaudhari N., Talwar P., Parimisetty A. et al. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Frontiers in Cellular Neuroscience. 2014. Vol. 8. P. 165-172.

Plotnikov E.Y., Kazachenko A.V., Vyssokikh M.Y. et al. Superoxide reacts with nitric oxide to nitrate tyrosine at physiological pH via peroxynitrite. J. Biol. Chem. 2000. Vol. 275. P. 32460-32466.

Ball L., Costantino F., Pelosi P. Postoperative complications of patients undergoing cardiac surgery. Current Opinion in Critical Care. 2016. Vol. 4. № 22. P. 386-392.

Honda H.M., Korge P., Weiss J. N. Mitochondria and ischemia/reperfusion injury. Annals of the New York Academy of Sciences. 2005. Vol. 1047. P. 248-258.

Лисенко В.Й. Загальна концепція токсичного дисгомео­стазу та критичного стану при хімічній травмі. Медицина неотложных состояний. 2017. № 4(75). С. 72-78.

Давыдов В.В., Божков А.И. Карбонильный стресс как неспецифический фактор патогенеза. Журнал НАМН України. 2018. Т. 20. № 1. С. 25-34.

Зоров Д.Б., Банникова С.Ю., Белоусов В.В. и др. Активные формы кислорода и азота: друзья или враги? Биохимия. 2005. Т. 70. № 45. С. 215-221.

Гребенчиков О.А., Лихванцев В.В., Плотников Е.Ю. и др. Молекулярные механизмы развития и адресная терапия синдрома ишемии-реперфузии. Анестезиология и реаниматология. 2014. № 3. С. 59-67.

Лэйн Н. Энергия, секс, самоубийство. Митохондрии и смысл жизни: пер. с англ. СПб.: Династия, 2016. 373 с.

Плотников Е.Ю. Митохондрии как центральное звено повреждающих и защитных сигнальных путей при развитии почечной недостаточности. Дис. ... на соискание ученой степени доктора биологических наук: спец. 03.00.25-03. «Гистология, цитология, клеточная биология». МГУ. Москва, 2009. 325 с.

Bartels K., Karhausen J., Clambey E. et al. Perioperative Organ Injury. Anesthesiology. 2013. Vol. 119. № 6. P. 1474-1489.

Barzegar A.O., Schiesser C.H., Taylor M.K. New reagents for detecting free radicals and oxidative stress. Organic & Biomolecular Chemistry. 2014. Vol. 12. P. 6757-6766.

Barrett W.C., DeGnore J.P., Keng Y.F. et al. Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B. J. Biol. Chem. 1999. Vol. 274. P. 343-346.

Cadenas E., Sies H. Oxidative stress: excited oxygen species and enzyme activity. Adv. Enzyme Regul. 1985. 23. Р. 217-37.

Ca peillere-Blandin C., Gausson V., Descamps-Latscha B. et al. Biochemical and spectrophotometric significance of advanced oxidized protein products. Biochim. Biophys. Acta. 2004. Vol. 1689. P. 91-102.

Noctor G., Lelarge-Trouverie C., Mhamdi A. The metabolomics of oxidative stress. Phytochemistry. 2014. Vol. 112. P. 33-53.

Mitchell P., Moyle J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature. 1967. Vol. 213. P. 137-139.

Isaev N.K., Zorov D.B., Stelmashook E.V. et al. Neurotoxic glutamate treatment of cultured cerebellar granule cells indu­ces Ca2+-dependent collapse of mitochondrial membrane potential and ultrastructural alterations of mitochondria. FEBS Lett. 2015. Vol. 392. P. 143-147.

Schumacker P.T. Hypoxia, anoxia, and O2 sensing: the search continues. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002. Vol. 283. P. 918-921.

Gadaleta D., Fahey A.L., Verma M. et al.Neutrophil leukotriene generation increases after cardiopulmonary bypass. The Journal of Thoracic and Cardiovascular Surgery. 1994. Vol. 108. № 4. P. 642-647.

Gu Y.J., Schoen P., Tigchelaar I., Loef B.G. et al. Increased neutrophil priming and sensitization before commencing сardiopulmonary bypass in cardiac surgical patients. Ann. Thorac. Surg. 2002. Vol. 74. P. 1173-1179.

Kamata H., Honda S.-I., Maeda S., Chang L. et al.Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005. Vol. 120. № 5. P. 649-661.

Albina J.E., Reichner J.S. Role of nitric oxide in mediation of macrophage cytotoxicity and apoptosis. Cancer. Metastasis. Rev. 1998. Vol. 17. P. 39-53.

Lopez Farre A., Casado S. Heart failure, redox alterations, and endothelial dysfunction. Нypertension. 2001. Vol. 38. P. 1400-1405.

Karkouti K. Transfusion and risk of acute kidney injury in cardiac surgery. British Journal of Anaesthesia. 2014. Vol. 109. № 1. P. 29-33.

Kawahito K., Kobayashi E., Ohmori M. et al. Enhanced responsiveness of circulatory neutrophils after cardiopulmonary bypass: increased aggregability and superoxide producing capacity. Artificial Organs. 2000. Vol. 24. № 1. P. 37-42.

Chello M., Mastroroberto P., Quirino A .et al. Inhibition of neutrophil apoptosis after coronary bypass operation with cardiopulmonary bypass. Ann. Thorac. Surg. 2002. Vol. 73. P. 123-130.

Kerr S., Brosnan M.J., McIntyre M. et al. Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium. Hypertension. 1999. Vol. 33. P. 1353-1358.

Kim Y.M., Kattach H., Ratnatunga C. et al. Association of atrial nicotinamide adenine dinucleotide phosphate oxidase activity with the development of atrial fibrillation after cardiac surgery. Journal of the American College of Cardiology. 2008. Vol. 51. № 1. P. 68-74.

Ohara Y., Peterson T.E., Harrison D.G. Hypercholesterole­mia increases endothelial superoxide anion production. J. Clin. Invest. 1993. Vol. 91. P. 2546-2551.

Gonenc A., Hacisevki A., Griffiths H. et al. Free radical reaction products and antioxidant capacity in beating heart coronary artery surgery compared to conventional bypass. Biochemistry (Mosc.). 2013. Vol. 76. P. 677-685.

Biglioli Р. Biological effects of off-pump vs. on-pump coronary artery surgery: focus on inflammation, hemostasis and oxidative stress. European Journal of Cardiothoracic Surgery. 2003. Vol. 24. P. 260-269.

Tarvasmäki T., Harjola V.P., Nieminen M.S. et al. Acute heart failure with and without concomitant acute coronary syndromes: patient characteristics, management, and survival. FINN-AKVA Study Group. J. Card. Fail. 2014. Vol. 20. № 10. Р. 723-30.

Yokoyama T., Baumgartner F.J., Gheissari A. et al. Off-pump versus on-pump coronary bypass in high-risk subgroups. Ann. Thorac. Surg. 2000. Vol. 70. P. 1546-1550.

Потапов А.Л. Синдром системного воспалительного ответа и антиэндотоксиновый иммунитет после операций на органах брюшной полости. Клiнiчна хiрургiя. 2008. № 1. С. 22-24.

Ascione R., Lloyd C.T., Underwood M.J. et al. Inflammatory response after coronary revascularization with or without cardiopulmonary bypass. Ann. Thorac. Surg. 2000. Vol. 69. P. 1198-1204.

Nashef S., Roques F., Sharples L. et al. EuroSCORE II. Eur. J. Cardiothorac. Surg. 2012. Vol. 41. P. 734-745.

Лукьянова Л.Д. Современные проблемы адаптации к гипоксии. Сигнальные механизмы и их роль в системной регуляции. Патол. физиол. и экспер. терапия. 2011. № 1. С. 3-19.

Dalle-Donne I., Aldini G., Carini M. et al. Protein carbony­lation, cellular dysfunction, and disease progression. J. Cell. Mol. Med. 2006. Vol. 10. P. 389-406

Филлиповская Ж.С. Оксидативный стресс в кардио­хирургии: новые маркеры-предикторы развития осложнений: автореф. дис. ... канд. мед. наук: спец. 14.01.20 «Анестезиология и реаниматология». Москва, 2018. 25 с.

Pearson T.A., Mensah G.A., Alexander R.W. et al. Mar­kers оf inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the centers for disease control and prevention and the American Heart Association. Circulation. 2003. Vol. 107. № 3. P. 499-511.

Лысенко В.И. Механизмы метаболического дисгомеостаза при токсикогипоксических комах. Проблемы токсикологии лекарственных средств и клинической токсикологии. 2011. № 5(55). С. 136-137.

Лисенко В.Й. Особливості патогенезу та інтенсивної терапії токсикогіпоксичних і метаболічних порушень в критичн­их станах при отруєннях нейротропними речовинами: автореф. дис. ... на здобуття наук. ступеня док. мед. наук: спец. 14.01.30 «Анестезіологія та інтенсивна терапія». Дніпропетровськ, 2005. 40 с.

Okamoto K. Permissive hypoxemia: another strategy. Journal of the Japanese Society of Intensive Care Medicine. 2016. Vol. 23. № 2. Р. 113-116.

Элленхорн М.Дж. Медицинская токсикология: Диаг­ностика и лечение отравлений у человека. Т. 1. М.: Медицина, 2003. С. 235-259.

Zhang Z., Naudhton D., Winyard P.G., Symons M.C.R. Redox potentials of milk xanthinedehydrogenase. Biochem. Biophys. Res. Commun. 1998. Vol. 249. P. 767-772.

Zweier I.L., Wang P., Samouilov A., Kuppusamy P. Characterization of free radical generation by xanthine oxidas. Natur. Med. 1995. Vol. 1. P. 804-809.

Brass E.P., Vetter W.H. Mechanism of activation of rat liver microsomal glutatione transpherase by noradrenaline and xanthine oxidase. Pharmacol. And Toxicol. 1993. Vol. 262. P. 5020-5027.

Zhang Y.H., Jin C.Z., Jang J.H. et al. Molecular mechanisms of neuronal nitric oxide synthase in cardiac function and pathophy­siology. The Journal of Physiology. 2014. Vol. 592. P. 3189-3200.

Cavalca V., Tremoli E., Porro B. et al. Oxidative stress and nitric oxide pathway in adult patients who are candidates for cardiac surgery: patterns and differences. Interactive CardioVascular and Thoracic Surgery. 2013. Vol. 17. № 6. P. 923-930.

Nowicki R., Saczko J., Kulbacka J. et al. The estimation of oxidative stress markers and apoptosis in right atrium auricles cardiomyocytes of patients undergoing surgical heart revascularization with the use of warm blood cardioplegia. Folia Histochemica et Cytobiologica. 2010. Vol. 48. № 2. P. 202-207.

Ghorbel M.T., Patel N.N., Sheikh M. et al. Changes in renal medulla gene expression in a pre-clinical model of post cardiopulmonary bypass acute kidney injury. BMC Genomics. 2014. Vol. 15. № 1. P. 118-129.

Плотников Е.Ю., Силачев Д.Н., Чупыркина А.А. и др. Новое поколение Скулачев-ионов, обладающих выраженным нефро- и нейропротекторным действием. Биохимия. 2013. Т. 75. № 2. С. 177-184.

Andrews D.T., Sutherland J., Dawson P. et al. L-arginine cardioplegia reduces oxidative stress and preserves diastolic function in patients with low ejection fraction undergoing coronary artery surgery. Anaesthesia and Intensive Care. 2013. Vol. 40. № 1. P. 99-106.

Усенко Л.В., Царев А.В. Современные возможности энергопротекции при критических состояниях. Медицина неотложных состояний. 2016. № 4(75). С. 72-78.

Xiaoyi Yuan, Ph.D., Jae W. Lee, M.D., Jessica L. Bowser, Ph.D., Viola Neudecker, M.D., Srikanth Sridhar, M.D., Holger K. Eltzschig, M.D., Ph.D. Targeting Hypoxia Signaling for Perioperative Organ Injury. Anesth. Analg. 2018 January. 126(1). Р. 308-321. doi: 10.1213/ANE.

Шифрин Г.А. Энергоресуститация. Біль, знеболювання і інтенсивна терапія. 2003. № 2(д). С. 257-259

Protti A., Singer M. Potential Strategies to protect or revers mitochondrial dysfunction in sepsis-induced organ failure. Crit. Care Med. 2006. Vol. 10(5). P. 228-232.

Gupta, R.K., Patel A.K., Shah N. Oxidative stress and antioxidants in disease and cancer: a review. Asian Pacific Journal of Cancer Prevention. 2014. Vol. 15. P. 4405-4409.

Шано В.П., Гюльмамедов Ф.И., Нестеренко А.Н. и др. Варианты лечения критических состояний с учетом патогенеза SIRS-синдрома системного воспалительного ответа. Анестезиология и реаниматология. 1997. № 6. С. 48-53.

Wu Y.S., Antony J.L. et al. Molecular mechanisms under­lying chronic inflammation-associated cancers. Cancer Letters. 2014. Vol. 345. № 2. Р. 164-173.

Тимочко М.Ф., Єлісєєва О.П., Кобилінська Л.І., Тимоч­ко І.Ф. Метаболічні аспекті формування кисневого гомеостазу в екстремальних станах. Львів: Місіонер, 1998. 142 с.

Wang H.L. Subanesthetic isoflurane reduces zymosan-induced inflammation in murine Kupffer cells by inhibiting ROS-activated p38 MAPK/NF-κB signaling. OxidativeMedicine and Cellular Longevity. 2014. Vol. 2014. Article ID 851692. Р. 13.

Copyright (c) 2020 EMERGENCY MEDICINE

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2020


   Seo анализ сайта