Infusion and transfusion therapy: main aspects


  • V.V. Nikonov Kharkiv Medical Academy of Postgraduate Education of the Ministry of Health of Ukraine, Kharkiv, Ukraine
  • K.I. Lyzohub Kharkiv Medical Academy of Postgraduate Education of the Ministry of Health of Ukraine, Kharkiv, Ukraine
  • M.V. Lyzohub State Institution “Sytenko Institute of Spine and Joint Pathology of the National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine



infusion-transfusion therapy, balanced crystalloid solutions, Plasmoven, hydroxyethyl starch


The adequate choice of strategy for infusion therapy is an essential component of successful management of critically ill patients. Infusion therapy is one of the main methods of maintai-ning vital functions of patients in the perioperative period. In the practice of a doctor, there are reasonable doubts about the feasibility and safety of various solutions for infusion therapy. Both are fundamental principles of infusion therapy, and the changes that have taken place, of course, need to be understood from the standpoint of evidence-based medicine. Balanced crystalloid solutions were safe and clinically effective, their use is provided by the Bri-tish Consensus Guidelines on Intravenous Fluid Therapy for Adult Surgical Patients.


Powell-Tuck J., Gosling P., Lobo D.N. et al. British Consensus Guidelines on Intravenous Fluid Therapy for Adult Surgical Patients. GIFTASUP. 2011.

Camacho Navarro L.H., Bloomstone J.A., Costa Auler J.O. Jr, Cannesson М., Rocca G.D., Gan T.J., Kinsky М., Magder S., Mil-ler T.E., Mythen М., Perel А., Reuter D.A., Pinsky M.R., Kra­mer G.C. Perioperative fluid therapy: a statement from the international Fluid Optimization Group. Perioper. Med. (Lond). 2015 Apr 10. Vol. 4. Article № 3. Doi: 10.1186/s13741-015-0014-z.

Kaye A.D., Riopelle J.M. Intravascular fluid and electrolyte physiology. Miller’s Anesthesia. 7th ed. Missouri: Churchill Livingstone, 2009. Р. 1705-37.

Hamilton M.A., Cecconi M., Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth. Analg. 2011. 112. 1392-402.

Chawla L.S., Ince C., Chappell D., Gan T.J., Kellum J.A., Mythen M. et al. Vascular content, tone, integrity, and haemodyna-mics for guiding fluid therapy: a conceptual approach. Br. J. Anaesth. 2014. 113. 748-55.

Junghans T., Neuss H., Strohauer M., Raue W., Haase O., Schink T. et al. Hypovolemia after traditional preoperative care in patients undergoing colonic surgery is underrepresented in conventional hemodynamic monitoring. Int. J. Colorectal. Dis. 2006. 21. 693-7.

Holte K., Kehlet H. Fluid therapy and surgical outcomes in elective surgery: a need for reassessment of fast-track surgery. J. Am. Coll. Surg. 2006. 202. 971-89.

Bundgaard-Nielsen M., Jorgensen C.C., Secher N.H., Kehlet H. Functional intravascular volume deficit in patients before surgery. Acta Anaesthesiol. Scand. 2010. 54. 464-9.

Nessim C., Sidéris L., Turcotte S., Vafiadis P., Lapostole A.C., Simard S. et al. The effect of fluid overload in the presence of an epidural on the strength of colonic anastomoses. J. Surg. Res. 2013. 183. 567-73.

Kulemann B., Timme S., Seifert G., Holzner P.A., Glatz T., Sick O. et al. Intraoperative crystalloid overload leads to substantial inflammatory infiltration of intestinal anastomoses — a histomorphological analysis. Surgery. 2013. 154. 596-603.

Auler J.O. Jr, Galas F., Hajjar L., Santos L., Carvalho T., Michard F. Online monitoring of pulse pressure variation to guide fluid therapy after cardiac surgery. Anesth. Analg. 2008. 106. 1201-6.

de Waal E.E., Rex S., Kruitwagen C.L., Kalkman C.J., Buhre W.F. Dynamic preload indicators fail to predict fluid responsiveness in open-chest conditions. Crit. Care Med. 2009. 37. 510-5.

Marik P.E., Cavallazzi R., Vasu T., Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit. Care Med. 2009. 37. 2642-7.

Kehlet H., Bundgaard-Nielsen M. Goal-directed perioperative fluid management. Anesthesiology. 2009. 110. 453-5.

Hood J.A., Wilson R.J.T. Pleth variability index to predict fluid responsiveness in colorectal surgery. Anesth. Analg. 2011. 113. 1058-63.

Deflandre E., Bonhomme V., Hans P. Delta down compared with delta pulse pressure as an indicator of volaemia during intracranial surgery. Br. J. Anaesth. 2007. 100. 245-50.

Lobo D.N., Macafee D.A., Allison S.P. How perioperative fluid balance influences postoperative outcomes. Best Pract. Res. Clin. Anaesthesiol. 2006. Vol. 20. P. 439-455.

Wang N., Jiang L., Zhu B. et al. Fluid balance and mortality in critically ill patients with acute kidney injury: a multicenter prospective epidemiological study. Crit. Care. 2015. Vol. 19. Р. 371-384.

Hydroxyethyl-starch solutions (HES) no longer to be used in patients with sepsis or burn injuries or in critically ill patients. EMA. 2013. 809470.

Marx G., Schindler A.W., Mosch C. et al. Intravascular vo-lume therapy in adults. Eur. J. Anaesthesiol. 2016. Vol. 33. Р. 1-34.

Food and Drug Administration. 2013. FDA Safety Communication: Boxed Warning on Increased Mortality and Severe Renal Injury, and Additional Warning on Risk of Bleeding, for Use of Hydroxyethyl Starch Solutions in Some Settings.

Neuhaus W., Schick M.A., Bruno R.R. The effects of colloid solutions on renal proximal tubular cells in vitro. Anesth. Analg. 2012. 114. 371-374.

Reitsma S., Slaaf DW, Vink H., van Zandvoort MA, oude Egbrink MG The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007. 454. 345-359.

Finfer S., Liu B., Taylor C., Bellomo R., Billot L., Cook D. et al. Resuscitation fluid use in critically ill adults: an international cross-sectional study in 391 intensive care units. Crit. Care. 2010. 14. R185.

Shaw A.D., Bagshaw S.M., Goldstein S.L. et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to plasma-lyte. Ann. Surg. 2012. Vol. 255. Р. 821-829.

British consensus guidelines on intravenous fluid therapy for adult surgical patients (GIFTASUP). Cassandra’s view. Anaesthesia. 2009. 64. Р. 235-238. doi: 10.1111/j.1365-2044.2009.05886_1.x.

Carcillo J.A., Tasker R.C. Fluid resuscitation of hypovolemic shock: acute medicine’s great triumph for children. Intensive Care Med. 2006 Jul. 32(7). 958-61. doi: 10.1007/s00134-006-0189-3.

Alhazzani W. et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Published: 28 March 2020.

Scott C., Kemp R. Direct and indirect calorimetry of lactate oxidation: Implications for whole-body energy expenditure. Journal of Sports Sciences. 2005. 23(1). 15-9.

Jeppesen J.B. et al. Lactate metabolism in chronic liver disease. Scandinavian Journal of Clinical and Laboratory Investigation. 2013. 73(4). Р. 293-299.

Levraut J., Ciebiera J.P., Chave S. et al. Mild Hyperlactatemia in Stable Septic Patients Is Due to Impaired Lactate Clearance Rather Than Overproduction. American Journal of Respiratory and Critical Care Medicine. 1998. 157(4). 1021-1026.

Голубовська О.А., Дубров С.О. та ін. Стандарти медичної допомоги «Коронавірусна хвороба (COVID-19)». Наказ МОЗ України від 28.03.2020 № 722 «Організація надання медичної допомоги хворим на коронавірусну хворобу (COVID-19)».

Di W., Ting Sh., Xiaobo Y. et al. Plasma Metabolomic and Lipidomic Alterations Associated with COVID-19. MedRviX. 21.04.2020.

Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020. 395(10223). 507-13.

CDC, 2020. Coronavirus Disease 2019 (COVID-19). People who are at higher risk. Page last reviewed: March 22, 2020. Accessible from: Last assessed: 24.03.2020.