Two Opposite Effects of NMDA-Receptors in Terms of Increased Range of Pharmacological Neuroprotection in Acute Cerebral Ischemia

L.V. Novytska-Usenko, V.P. Muslin, A.A. Kryshtafor


This review presents the recent data of basic researches, revealing the features of excitotoxicity, taking into account the importance of NMDA-receptor functioning during ischemia/reperfusion of brain tissue depending on their extrasynaptic and synaptic localization. This information can be used in the development of possible new approaches to the formation of the strategy for pharmacological neuroprotection in critical conditions of the brain, based on the possibility of creating conditions for inhibiting the initiation of an apoptotic program and activation or maintaining the processes of cellular survival.


excitotoxicity; synaptic; extrasynaptic NMDA-receptors; apoptosis; apoptotic factors; cellular survival


Wiegert J.S., Bading H. Activity-dependent calium signaling and ERK-MAP kinases in neurons:a link to structural plasticity of the nucleus and gene transcription regulation // Cell Calcium. 2011 May; 49(5): 296-305.

Ivanov A., Pellegrino C., Rama S., Dumalska I., Salyha Y., Ben-Ari Y., Medina I. Opposing role of synaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons // J. Physiol. 2006, May 1; 572 (Pt 3): 789-89.

Krapivinsky G., Krapivinsky L., Manasian Y., Ivanov A., Tyzio R., Pellegrrino C., Ben-Ari Y., Clapham D.E., Medina I. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1 // Neuron. 2003, Nov 13; 40(4): 775-84.

Petralia R.S., Wang Y.X., Hua F., Yi Z., Stephenson F.A., Wenthold R.J. Organization of NMDA receptors at extrasynaptic location // Neuroscience. 2010, Apr 28; 167(1): 68-87.

Hardingham G.E., Bading H. Synaptic versus extrasynaptic NMDA receptor signaling: implications for neurodegenerative disorders // Nat. Rev. Neurosci. 2010 Oct; 11(10): 682-96.

Кудряшов И.Е. Глутаматергические ионотропные рецепторы и потенциал-зависимые дендритные каналы в гиппокампе: их взаимодействие в пластических процессах // Нейрохимия. — 2003. — Т. 20, № 2. — С. 85-92.

Leveille F., Gaamouch F., Gouix E., Lecocg M., Lobner D., Nicole O., Buisson A. Neuronal viability is controlled by afunctional relation between synaptic and extrasynaptic NMDA receptors // FASEB J. 2008 Dec; 22(12): 4258-4271.

Dick O., Bading H. Synaptic activity and nuclear calcium signaling protect hippocampal neurons from death signal-associated nuclear translocation of FoxO3a induced by extrasynaptic N-methyl-D-aspartate receptors // J. Biol. Chem. 2010, Jun 18; 285(25): 19354-61.

Tu W., Xu X., Peng L., Zhong X., Zhang W., Soundarapandian M.M., Balel C., Wang M., Jia N., Zhang W., Lew F., Chan S.L., Chan Y., Lu Y. DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke // Cell. 2010, Jan 22; 140(2): 222-34.

Wahl A.S., Buchthal B., Rode F., Bomholt S.F., Freitag H.E., Hardingham G.E., Ronn L.C., Bading H. Hypoxic/ischemic conditions induce expression of the putative pro-death Clca1 via activation of extrasynaptic N-methyl-D-aspartate receptors // Neuroscience. 2009, Jan 12; 158(1): 344-52.

Zang S.J., Steijaert M.N., Lau D., Schutz G., Delucinge-Vivier C., Dascombes P., Bading H. Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death // Neuron. 2007, Feb 15; 53(4): 549-62.

Hardingham G.E., Fukunaga Y., Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways // Nat. Neurosci. 2002 May; 5(5): 405-14.

Гусев Е.И., Скворцова В.И. Ишемия головного мозга. — М., 2001. — C. 326.

Al-Mubarak B., Soriano F.X., Hardingham G.E. Synaptic NMDAR activity suppresses FOXO1 expression via a cis-acting FOXO binding site: FOXO1 is a FOXO target gene // Channels (Austin). 2009 Jul-Aug; 3(4): 233-8.

Papadia S., Soriano F.X., Leveille F., Martel M.A., Dakin K.A., Hansen H.H., Kaindi A., Sifringer M., Fowler J., Stefovska V., McKenzie G., Craiqon M., Corriveau R., Ghazal P., Horsburqh K., Yankner B.A., Wyllie D.J., Ikonomidou C., Hardingham G.E. Synaptic NMDA receptor activity boots intrinsic antioxidant defenses // Nat. Neurosci. 2008 Apr: 11(4): 476-87.

Губский Ю.И., Беленичев И.Ф., Левицкий Е.Л., Горбачева С.В., Бухтиярова Н.В., Задорина О.В. Роль активных форм кислорода в функциональной активности MAP-киназного каскада, глобальных факторов транскрипции и развитии апоптоза (обзор литературы и собственных исследований) // Журн. АМН України. — 2008. — Т. 14, № 2. — С. 203-217.

Lee B., Butcher G.Q., Hoyt K.R., Impey S., Obrietan K. Activity-dependent neuroprotection and cAMP response element-binding protein(CREB): kinase coupling, stimulus intensity, and temporal regulation of CREB phosphorylation at serine 133 // J. Neurosci. 2005, Feb 2; 25(5): 1137-48.

Hardingham G.E., Bading H. Coupling of extrasynaptic NMDA receptors to a CREB shut-off pathway is development regulated // Biochim. Biophys. Acta. 2002, Nov 4; 1600 (1–2): 148-153.

Hardingham G.E., Arnold F.J., Bading H. Nuclear calcium signaling control CREB- mediated gen expression triggered by synaptic activity // Nat. Neurosci. 2001 Mar; 4(3): 261-7.

Zhang S.J., Buchthal B., Lau D., Haver S., Dick O., Schwa­ninger M., Veltkamp R., Zou M., Weiss U., Bading H. A signal cascade of nuclear calcium-CREB-ATF3 activated by synaptic NMDA receptors defines a gene repression module theet protects agains extrasynaptic NMDA receptor-induced neuronal cell death and ischemic brain damage // J. Neurosci. 2011, Mar 30; 31(13): 4978-90.

Zhang S.J., Steijaert M.N., Lau D., Schutz G., Delucinge-Vivier C., Descombes P., Bading H. Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death // Neuron. 2007, Feb 15; 53(4): 549-62.

Papadia S., Stevenson P., Hardingham N.R., Bading H., Hardingham G.E. Nuclear Ca2+ and the cAMP response element-binding protein family mediate a late phase of activity-dependent neuroprotection // J. Neurosci. 2005, Apr 27; 25(17): 4279-87.

Hardingham G.E., Chawla S., Johnson C.M., Bading H. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression // Nature. 1997, Jan 16; 385(6613): 260-265.

Zhang S.J., Zou M., Lu L., Lau D., Ditzel D.A., Delucinge-Viver C., Aso Y., Descombes P., Bading H. Nuclear calcium signaling controls expression of large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity // PloS ­Genet. 2009 Aug; 5(8): e1000604.

Leveille F., Papadia S., Fricker M., Bell K.F., Soriano F.X., Wyllie D.J., Ikonomidou C., Tolkovsky A.M., Haredingham G.E. Suppression of the intrinsic apoptosis pathway by synaptic activity // J. Neurosci. 2010, Feb 17; 30(7): 2623-35.

Lui D., Bading H. Synaptic activity-mediated suppression of p53 and indication of nuclea calcium-regulated neuroprotective genes promote survival through inhibition of mitochondrial permeability transition // J. Neurosci. 2009, Apr 8; 29 (14): 4420-29.

Zhou X., Hollern D., Liao J., Andrechek E., Wang H. NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors // Cell Death Dis. 2013, Mar 28; 4: e560. doi: 10.1038/cddis.2013.82.

Vizi E.S., Fekete A., Karoly R., Mike A. Non-synaptic receptors and transporters involeved in brain function and targets of drug treatment // Br. J. Pharmacol. 2010 Jun; 160(4): 785-809.

Semyanov A.V. Diffusional extrosynaptic neurotransmission via glutamate and GABA // Neurosci. Behav. Physiol. 2005; 35(3): 253-366.

Copyright (c) 2016 EMERGENCY MEDICINE

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2018


   Seo анализ сайта