Antibiotic Resistance: Mechanisms of Development and Ways to Prevent

M.V. Bondar, M.M. Pylypenko, M.Yu. Svintukovskyi, L.A. Kharchenko, O.M. Prevysla, I.M. Tsvyk

Abstract


In recent years, the problem of resistance of pathogens to the main groups of antibacterial drugs has grown from a medical to a weighty socio-economic one. The possibility of acquiring by pathogens of resistance to the main groups of antibacterial drugs is associated with the ability of bacteria to acquire new genetic information. A key factor in the spread of resistance is the ability of bacteria to pass this information not only hereditarily, but also during direct contact of one bacterium to another through the plasmids. Major biological mechanisms of resistance is an increase of gene expression and synthesis of proteins (on which antibiotic acts) with changes in their structure, synthesis of beta-lactamases, which inactivate an antibiotic, active excretion (efflux) of antibiotic from microbial cells, reduction of bacterial cell membrane permeability for antibiotic, formation of metabolic «shunt» and others.
The main ways of preventing and overcoming antibiotic resistance are prevention of antibiotic-resistant pathogens spread and rational use of antibiotics. The modern views on the mechanisms of developing resistance of pathogens to the main groups of antibacterial drugs and ways to address this urgent problem are shown in this paper.


Keywords


antibiotics; resistance; plasmids; beta-lactamases; penicillin-binding proteins; horizontal gene transfer; minimum inhibitory concentration of antibiotic

References


Сидоренко С.В. Механизмы резистентности микроорганизмов. Практическое руководство по антиинфекционной химиотерапии / Под редакцией Л.С. Страчунского, Ю.Б. Белоусова, С.Н. Козлова. — ​М., 2002. — 290 с.

Яковлев В.П., Яковлев С.В. Рациональная антимикробная фармакотерапия: Руководство для практикующих врачей. — ​М.: Литтерра, 2003. — 1008 с.

Azucena E., Mobashery S. Aminoglycoside-modifying enzyme: mechanism of catalytic processes and inhibition // Drug Res. Updates. — 2001. — 4. — 106-117.

Barbier F., Lisboa T., Nseir S. Understanding why resistant bacteria are associated with higher mortality in ICU patients // Intensive Care Med. — 2016; Epub ahead of print PMID: 26564210.

Bassetti M., De Waele J.J., Eggimann P. et al. Preventive and therapeutic strategies in critically ill patients with highly resistant bacteria // Intensive Care Med. — 2015. — 41. — 776-795.

Bush K., Jacoby G.A., Medeiros A.A. A functional classification of beta-lactamases and its correlation with molecular structure // Agents Chemother. — 1995. — 39. — 1211-1233.

Carton R., Coque T.M. The CTX-M beta-lactamase pande­mic // Curr. Opin. Microbiol. — 2006. — 9. — 466-475.

Courvalin P. New plasmid mediated resistance to antimicrobials // Arch. Microbiol. — 2008. — 189. — 289-291.

Doern G.V. Antimicrobial resistance among clinical isolates of Streptococcus pneumoniae in the United States during 1999–2000, including a comparison of resistance rates since 1994–1995 // Antimicrobial Agents and Chemotherapy. — 2001. — 45(6). — 1721-1729.

Jayaraman R. Antibiotic resistance: an overview of mechanisms and paradigm shift // Current Science. — 2009. — 96(11). — 1475-1484.

Laxminarayan R., Duse A., Wattal C. et al. Antibiotic resistance — ​the need for global solutions // Lancet Infect. Dis. — 2013. — № 13(12). — ​P. 1057-1098.

Li X., Nicaido H. Efflux-mediated drug resistance in bacteria // Drug. — 2004. — 64. — 159-204.

Robiscek A. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyl transferase // Nature Res. Updates. — 2001. — 4. — 106-117.

Ruiz J. Mechanism of resistance to quinolones: Target alteration, decrease accumulation and gyrase protection // J. Antimicrob. Chemother. — 2003. — 51. — 1109-1117.

Ruppé É., Woerther P.L., Barbier F. Mechanisms of antimicrobial resistance in Gram-negative bacilli // Ann. Intensive Care. — 2015. — 5-21.

Vincent J.-L., Rello J., Marshall J. et al. International study of the prevalence and outcomes of infection in intensive care units // JAMA. — 2009. — 302. — 2323-2329.

Zapun A., Conters-Martel C., Vernet T. Penicillin-binding proteins and lactam resistance // FEMS Microbiol. Rev. — 2008. — 32. — 361-385.

Zhang Yu-Zhi, Singh S. Antibiotic stewardship programmes in intensive care units: Why, how, and where are they leading us // World J. Crit. Care Med. — 2015. — 4(1). —13-28.




DOI: https://doi.org/10.22141/2224-0586.3.74.2016.76136

Copyright (c) 2016 EMERGENCY MEDICINE

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2018

 

   Seo анализ сайта