The ultrastructural changes of mitochondria under insulin insufficiency

O.A. Loskutov, O.A. Pivovarova


The high prevalence of diabetes and the progressive increase in the number of patients suffering from organ-specific complications of diabetes makes us look for factors influen­cing the change of metabolic processes and leading to energy imbalance and possible defects in the mitochondria in diffe­rent tissues under the influence of insulin deficiency. The study included 52 white Wistar rats weighing 234.00 ± 2.64 g at the age of 5–6 months. Group I consisted of 25 laboratory rats with streptozotocin diabetes not receiving hypoglycemic therapy. II group (27 animals) — control group. As a result of the electron microscopic examination of the myocardium and lung tissue, we have revealed ultrastructural changes of mitochondria in the form of disorganization and the reduction of their structures in a persistent decompensation of carbohydrate metabolism, in contrast to the group of non-diabetic rats. It indicates the development of secondary mitochondrial insufficiency in the myocardium and tissues of the respiratory system in medically uncontrolled hyperglycemia.


mitochondria; streptozotocin diabetes; electron microscopy; myocardium; lungs


Guariguata L.Contributedatatothe6theditionoftheIDFDiabetesAtlas.DiabetesRes. Clin. Pract. 2013;100(2):280-281.doi: 10.1016/j.diabres.2013.02.006.

Twig G., Yaniv G., Levine H., Leiba A., Goldberger N., Derazne E., Ben-AmiShor D., Tzur D., Afek A., Shamiss A., Haklai Z., Kark J.D.Body-MassIndexin2.3MillionAdolescentsandCardiovascularDeathinAdulthood.N.Engl. J.Med. 2016;374(25):2430-40. doi: 10.1056/NEJMoa1503840.

Danaei G., Finucane M.M., Lu Y., Singh G.M., Cowan M.J., Paciorek C.J., Lin J.K., Farzadfar F., Khang Y.H., Stevens G.A., Rao M., Ali M.K., Riley L.M., Robinson C.A., Ezzati M.GlobalBurdenofMetabolicRiskFactorsofChronicDiseasesCollaboratingGroup (BloodGlucose).National, regional, andglobaltrendsinfastingplasmaglucoseanddiabetesprevalencesince1980: systematicanalysisofhealthexaminationsurveysandepidemiologicalstudieswith370country-yearsand 27 millionparticipants.Lancet. 2011;378(9785):31-40. doi: 10.1016/S0140-6736(11)60679-X.

Dosluoglu H.H., Lall P., Nader N.D., Harris L.M., Dryjski M.L.Insulinuseisassociatedwithpoorlimbsalvageandsurvivalindiabeticpatientswithchroniclimbischemia.J.Vasc.Surg. 2010; 51(5):1178-89. doi: 10.1016/j.jvs.2009.11.077.

Zhou B., Lu Y., Hajifathalian K., Bentham J., Collaborators (513).Worldwidetrendsindiabetessince 1980: a pooledanalysisof 751 population-basedstudieswith 4.4 millionparticipants.Lancet. 2016; 387(10027):1513-30. doi: 10.1016/S0140-6736(16)00618-8.

Wheatley C.M., Baldi J.C., Cassuto N.A., Foxx-Lupo W.T., Snyder E.M.Glycemiccontrolinfluenceslungmembranediffusionandoxygensaturationinexercise-trainedsubjectswithtype1diabetes: alveolar-capillarymembraneconductanceintype1diabetes.Eur. J.Appl.Physiol. 2011; 111(3):567-78. doi: 10.1007/s00421-010-1663-8.

MercerJ.R., LiuH.TheEvaluationofHypoxiainDiabetes. 1999; 33 oftheseriesDevelopmentsinNuclearMedicine: 129-153,

Gomez-Valdes A.Chronic Hypoxia Causes Disorder of Glucose Metabolism and a Specific Type of Diabetes. Journal of Endocrinology and Diabetes Mellitus. 2014; 2(issue 2): 53-57.

Armstrong J.S., Whiteman M.Measurementofreactiveoxygenspeciesincellsandmitochondria.MethodsCellBiol. 2007;80:355-77.

Roth M., Black J.L.AnimbalanceinC/EBPsandincreasedmitochondrialactivityinasthmaticairwaysmoothmusclecells: noveltargetsinasthmatherapy?Br. J.Pharmacol. 2009; 157(3):334-41. doi: 10.1111/j.1476-5381.2009.00188.x.

Shamima R., Mirian C.H.J.Disorders of MitochondrialEnergy Metabolism. 2016;

Mayevsky A., Rogatsky G.G.Mitochondrialfunctioninvivoevaluatedby NADH fluorescence: fromanimalmodelstohumanstudies.Am. J.Physiol.Cell.Physiol. 2007; 292(2):615-40.

Schaible N., Delmotte P., Sieck G.C.Mitochondrial Excitation-Energy Coupling in Airway Smooth Muscle. Respiratory Medicine.2014:93-116.

Karypy V.Y. Elektronaymikroskopiy.1984. K.; 208 р.

Li F., Fan X., Zhang Y., Pang L., Ma X., Song M., Kou J., Yu B.CardioprotectionbycombinationofthreecompoundsfromShengMaipreparationsinmicewithmyocardialischemia/reperfusioninjurythrough AMPK activation-mediatedmitochondrialfission.Sci.Rep. 2016;6:37114. doi: 10.1038/srep37114.

Carraro M., Bernardi P.Calciumandreactiveoxygenspeciesinregulationofthemitochondrialpermeabilitytransitionandofprogrammedcelldeathinyeast.CellCalcium. 2016;60(2):102-7. doi: 10.1016/j.ceca.2016.03.005.

Carraro M., Giorgio V., Šileikytė J., Sartori G., Forte M., Lippe G., Zoratti M., Szabò I., Bernardi P.Channelformationbyyeast F-ATP synthaseandtheroleofdimerizationinthemitochondrialpermeabilitytransition.J.Biol.Chem. 2014;289(23):15980-5. doi: 10.1074/jbc.C114.559633.

Brooks G.A.EnergyFlux, LactateShuttling, MitochondrialDynamics, andHypoxia.AdvExpMedBiol. 2016;903:439-55. doi: 10.1007/978-1-4899-7678-9_29.

Gonchar O., Mankovskaya I.Effectofmoderatehypoxia/reoxygenationonmitochondrialadaptationtoacuteseverehypoxia.ActaBiolHung. 2009;60(2):185-94. doi: 10.1556/ABiol.60.2009.2.6.



  • There are currently no refbacks.

Copyright (c) 2017 EMERGENCY MEDICINE

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2018


   Seo анализ сайта