Persistent inflammation, immunosuppression and catabolism syndrome: mechanisms of sarcopenia and ways of correction




sarcopenia, inflammation, catabolism, nutrition


Due to advances in intensive care, many patients with severe pathology are discharged from intensive care units. However, prolonged mild degree inflammation persists in some patients, recovery is protracted, and chronic critical illness develops in them. In addition, persistent inflammation, immunosuppression and catabolism arise. In 2012, this condition was identified as a separate syndrome, which can be observed after severe trauma and burns, sepsis, necrotizing pancreatitis. Significant loss of muscle mass that is difficult to correct is one of the leading clinical manifestations in this case. Using literature from the MEDLINE database, modern ideas about the mechanisms of sarcopenia in the persistent inflammation, immunosuppression and catabolism syndrome and possible ways of optimal anabolic support are described.


Download data is not yet available.


Mira JC, Gentile LF, Mathias BJ, et al. Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immunosuppression and catabolism syndrome. Crit Care Med. 2017;45(2):253–262. doi:10.1097/CCM.0000000000002074.

Stortz JA, Mira JC, Raymond SL, et al. Benchmarking clinical outcomes and the immunocatabolic phenotype of chronic critical illness after sepsis in surgical intensive care unit patients. J Trauma Acute Care Surg. 2018;84:342–349. doi: 10.1097/TA.000000000000175.

Gardner AK, Ghita GL, Wang Z, et al. The development of chronic critical illness determines physical function, quality of life, and longterm survival among early survivors of sepsis in surgical ICUs. Crit Care Med. 2019;47(4):566-573. doi: 10.1097/CCM.000000000000365.

Gentile LF, Cuenca AG, Efron PA, et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg. 2012;72(6):1491–1501. doi:10.1097/TA.0b013e318256e00.

Mira JC, Cuschieri J, Ozrazgat-Baslanti T, et al. The epidemiology of chronic critical illness after severe traumatic injury at two level-one trauma centers. Crit Care Med. 2017;45(12):1989–1996. 10.1097/CCM.0000000000002697.

Monk DN, Plank LD, Franch-Arcas G, Finn PJ, Streat SJ, Hill GL. Sequential changes in the metabolic response in critically injured patients during the first 25 days after blunt trauma. Ann Surg. 1996;223:395–405. doi: 10.1097/00000658-199604000-00008.

Puthucheary ZA, Rawal J, McPhail M, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310:1591–1600. doi: 10.1001/jama.2013.278481.

Wischmeyer PE, San-Millan I. Winning the war against ICU-acquired weakness: new innovations in nutrition and exercise physiology. Crit Care. 2015;19(Suppl3):S6. doi:10.1186/cc14724.

Puthucheary ZA, Astin R, McPhail MJW, et al. Metabolic phenotype of skeletal muscle in early critical illness. Thorax. 2018; 73:926–935. doi: 10.1136/thoraxjnl-2017-211073.

Wesselink E, Koekkoek WAC, Grefte S, Witkamp RF, van Zanten ARH. Feeding mitochondria: potential role of nutritional components to improve critical illness convalescence. Clin Nutr. 2019; 38:982–995. doi: 10.1016/j.clnu.2018.08.032.

Dos Santos C, Hussain SN, Mathur S, et al. Mechanisms of chronic muscle wasting and dysfunction after an intensive care unit stay. A pilot study. Am J Respir Crit Care Med. 2016; 194:821–830. doi: 10.1164/rccm.201512-2344OC.

Parry SM, El-Ansary D, Cartwright MS, et al. Ultrasonography in the intensive care setting can be used to detect changes in the quality and quantity of muscle and is related to muscle strength and function. J Crit Care. 2015;30:1151.e9–14. doi: 10.1016/j.jcrc.2015.05.024.

Chan KS, Mourtzakis M, Aronson Friedman L, et al., National Institutes of Health National Heart, Lung, and Blood Institute (NHLBI) Acute Respiratory Distress Syndrome (ARDS) Network. Evaluating muscle mass in survivors of acute respiratory distress syndrome: a 1-year multicenter longitudinal study. Crit Care Med. 2018;46:1238–1246. doi: 10.1097/CCM.0000000000003183.

Wall BT, Dirks ML, Snijders T, Senden JMG, Dolmans J, van Loon LJC. Substantial skeletal muscle loss occurs during only 5 days of disuse. Acta Physiol. 2014;210:600–611. doi: 10.1111/apha.12190.

Gandotra S, Lovato J, Case D, et al. Physical function trajectories in survivors of acute respiratory failure. Ann Am Thorac Soc. 2019;16:471–477. doi: 10.1513/AnnalsATS.201806-375OC.

Schefold JC, Bierbrauer J, Weber-Carstens S. Intensive care unitacquired weakness (ICUAW) and muscle wasting in critically ill patients with severe sepsis and septic shock. J Cachexia Sarcopenia Muscle. 2010;1(2):147–157. doi: 10.1007/s13539-010-0010-6.

Moro T, Ebert SM, Adams CM, Rasmussen BB. Amino acid sensing in skeletal muscle. Trends Endocrinol Metab. 2016;27:796–806. doi: 10.1016/j.tem.2016.06.010.

Bowen TS, Schuler G, Adams V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle. 2015;6:197–207. doi: 10.1002/jcsm.12043.

Gordon SE, Lake JA, Westerkamp CM, Thomson DM. Does AMP-activated protein kinase negatively mediate aged fast-twitch skeletal muscle mass? Exerc Sport Sci Rev. 2008;36(4):179–186. doi: 10.1097/JES.0b013e3181877e13.

Meng SJ, Yu LJ. Oxidative stress, molecular inflammation and sarcopenia. Int J Mol Sci. 2010;11(4):1509–1526. doi: 10.3390/ijms11041509.

Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280:4294–4314. doi: 10.1111/febs.12253.

Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell. Biol. 2005;37(10):1974–84. doi: 10.1016/j.biocel.2005.04.018.

Wada S, Kato Y, Okutsu M, Miyaki S, Suzuki K, Yan Z, et al. Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. J Biol Chem. 2011;286:38456–38465. doi: 10.1074/jbc.M111.271270.

Mourkioti F, Rosenthal N. NF-kappaB signaling in skeletal muscle: prospects for intervention in muscle diseases. J Mol Med. 2008;86(7):747–759. doi: 10.1007/s00109-008-0308-4.

Mitch WE, Hu Z, Lee SW, Du J. Strategies for suppressing muscle atrophy in chronic kidney disease: mechanisms activating distinct proteolytic systems. J Renal Nutr. 2005;15(1):23–27. doi: 10.1053/j.jrn.2004.09.025.

Diaz MC, Ospina-Tascon GA, Salazar CB. Respiratory muscle dysfunction: a multicausal entity in the critically ill patient undergoing mechanical ventilation. Arch Bronconeumol. 2014;50(2):73–77. doi: 10.1016/j.arbres.2013.03.005.

Tagerud S, Libelius R. Lysosomes in skeletal muscle following denervation. Time course of horseradish peroxidase uptake and increase of lysosomal enzymes. Cell Tissue Res. 1984;236(1):73–79. doi: 10.1007/BF00216515.

Singer P, Berger MM, Van den Berghe G, et al. ESPEN Guidelines on Parenteral Nutrition: intensive care. Clin Nutr. 2009;28(4):387–400. doi: 10.1016/j.clnu.2009.04.024.

Jolliet P, Pichard C, Biolo G, et al. Enteral nutrition in intensive care patients: a practical approach. Working group on nutrition and metabolism, ESICM. European Society of Intensive Care Medicine. Intensive Care Med. 1998;24(8):848–859. doi: 10.1007/s001340050677.

Hoffer LJ, Bistrian BR. What is the best nutritional support for critically ill patients? Hepatobil Surg Nutr. 2014;3(4):172–174. doi: 10.3978/j.issn.2304-3881.2014.08.03.

Moore FA, Phillips SM, McClain CJ, Patel JJ, Martindale RG. Nutrition support for persistent inflammation, immunosuppression, and catabolism syndrome. Nutr Clin Pract. 2017;32(1_suppl):121S–1277S. doi:10.1177/0884533616687502.

Hurt RT, McClave SA, Martindale RG, et al. Summary points and consensus recommendations from the international protein summit. Nutr Clin Pract. 2017;32(1_ suppl):142S–151S. doi: 10.1177/0884533617693610.

Deutz NE, Wolfe RR. Is there a maximal anabolic response to protein intake with a meal? Clin Nutr. 2013;32(2):309–313. doi: 10.1016/j.clnu.2012.11.018.

Anton SD, Hida A, Mankowski R, et al. Nutrition and exercise in sarcopenia. Curr Protein Pept Sci. 2018;19(7):649–667. doi: 10.2174/1389203717666161227144349.

Herndon DN, Tompkins RG. Support of the metabolic response to burn injury. Lancet. 2004;363(9424):1895–1902. doi: 10.1016/S0140-6736(04)16360-5.

Allingstrup MJ, Esmailzadeh N, Wilkens Knudsen A, et al. Provision of protein and energy in relation to measured requirements in intensive care patients. Clin Nutr. 2012;31(4):462–468. doi: 10.1016/j.clnu.2011.12.006.

McClave SA, Martindale RG, Vanek VW, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically Ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.PE.N.). J Parenter Enter Nutr. 2009;33(3):277–316. doi: 10.1177/0148607109335234.

Hoffer LJ, Bistrian BR. Appropriate protein provision in critical illness: a systematic and narrative review. Am J Clin Nutr. 2012;96(3):591–600. doi: 10.3945/ajcn.111.032078.

Op den Kamp CM, Langen RC, Haegens A, Schols AM. Muscle atrophy in cachexia: can dietary protein tip the balance? Curr Opin Clin Nutr Metab Care. 2009;12:611–616. doi: 10.1097/MCO.0b013e3283319399.

Bauer J, Morley JE, Schols AMWJ, Ferrucci L, et al. Sarcopenia: a time for action. An SCWD Position Paper. J Cachexia Sarcopenia Muscle. 2019; 10(5):956-961. doi: 10.1002/jcsm.12483.

Arends J, Bachmann P, Baracos V, et al. ESPEN guidelines on nutrition in cancer patients. Clin Nutr. 2017;36:11–48. doi: 10.1016/j.clnu.2016.07.015.

Deutz NE, Matheson EM, Matarese LE, et al. Readmission and mortality in malnourished, older, hospitalized adults treated with a specialized oral nutritional supplement: a randomized clinical trial. Clin Nutr. 2016;35(1):18–26. doi: 10.1016/j.clnu.2015.12.010.

Stanojcic M, Finnerty CC, Jeschke MG. Anabolic and anticatabolic agents in critical care. Curr Opin Crit Care. 2016;22(4):325–331. doi: 10.1097/MCC.0000000000000330.

Porro LJ, Herndon DN, Rodriguez NA, et al. Five-year outcomes after oxandrolone administration in severely burned children: a randomized clinical trial of safety and efficacy. J Am Coll Surg. 2012;214(4):489–502. doi: 10.1016/j.jamcollsurg.2011.12.038.

Herndon DN, Hart DW, Wolf SE, Chinkes DL, Wolfe RR. Reversal of catabolism by beta-blockade after severe burns. N Engl J Med. 2001;345(17):1223–1229. doi: 10.1056/NEJMoa010342.

Suman OE, Spies RJ, Celis MM, Mlcak RP, Herndon DN. Effects of a 12-wk resistance exercise program on skeletal muscle strength in children with burn injuries. J Appl Physiol. 2001;91(3):1168–1175. doi: 10.1152/jappl.2001.91.3.1168.

Hart DW, Herndon DN, Klein G, et al. Attenuation of posttraumatic muscle catabolism and osteopenia by long-term growth hormone therapy. Ann Surg. 2001;17:827–834. doi: 10.1097/00000658-200106000-00013.

Gibran N, Wiechman S, Meyer W, et al. Summary of the 2012 ABA burn quality consensus conference. J Burn Care Res. 2013;34:361–385. doi: 10.1097/BCR.0b013e31828cb249.

Jeschke MG, Finnerty CC, Suman OE, Kulp G, Micak RP, Herndon DN. The effect of oxandrolone on the endocrinologic, inflammatory, and hypermetabolic responses during the acute phase postburn. Ann Surg. 2007;246:351–360. doi: 10.1097/SLA.0b013e318146980e.

Reeves PT, Herndon DN, Tanksley JD, et al. Five-year outcomes after long-term oxandrolone administration in severely burned children. Shock. 2016;45:367–374. doi: 10.1097/SHK.0000000000000517.

Giannoulis MG, Martin FC, Nair KS, Umpleby AM, Sonksen P. Hormone replacement therapy and physical function in healthy older men. Time to talk hormones? Endocr Rev. 2012;33:314–377. doi: 10.1210/er.2012-1002.

Xu L, Freeman G, Cowling BJ, Schooling CM. Testosterone therapy and cardiovascular events among men: A systematic review and meta-analysis of placebo-controlled randomized trials. BMC Med. 2013;11:108. doi: 10.1186/1741-7015-11-108.

Lynch GS. Emerging drugs for sarcopenia: Age-related muscle wasting. Expert Opin Emerg Drugs 2004;9:345–361. doi: 10.1517/14728214.9.2.345.

Stewart Coats AJ, Srinivasan V, Surendran J, et al. The ACT-ONE trial, a multicentre, randomised, double-blind, placebo-controlled, dose-finding study of the anabolic/catabolic transforming agent, MT-102 in subjects with cachexia related to stage III and IV non-small cell lung cancer and colorectal cancer: Study design. J Cachexia Sarcopenia Muscle. 2011;2: 201–207. doi: 10.1007/s13539-011-0046-2.

Rooks D, Roubenoff R. Development of Pharmacotherapies for the Treatment of Sarcopenia. J Frailty Aging. 2019;8:120–130. doi: 10.14283/jfa.2019.11.

Liebau F, Wernerman J, van Loon LJ, Rooyackers O. Effect of initiating enteral protein feeding on whole-body protein turnover in critically ill patients. Am J Clin Nutr. 2015; 101:549–557. doi: 10.3945/ajcn.114.091934.

Bear DE, Hart N, Puthucheary Z. Continuous or intermittent feeding: pros and cons. Curr Opin Crit Care. 2018; 24:256–261. doi: 10.1097/MCC.0000000000000513.

Mathias B, Delmas AL, Ozrazgat-Baslanti T, et al. Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. Ann Surg. 2017;265(4):827–834. doi: 10.1097/SLA.0000000000001783.

Zhu X, Pribis JP, Rodriguez PC, et al. The central role of arginine catabolism in T-cell dysfunction and increased susceptibility to infection after physical injury. Ann Surg. 2014; 259(1):171–178. doi: 10.1097/SLA.0b013e31828611f8.

Wu G, Bazer FW, Davis TA, et al. Arginine metabolism and nutrition in growth, health and disease. Amino Acids. 2009;37(1):153–168. doi: 10.1007/s00726-008-0210-y.

Rosenthal MD, Vanzant EL, Martindale RG, Moore FA. Evolving paradigms in the nutritional support of critically ill surgical patients. Curr Probl Surg. 2015;52:147–182. doi: 10.1067/j.cpsurg.2015.02.003.

English KL, Mettler JA, Ellison JB, et al. Leucine partially protects muscle mass and function during bed rest in middle-aged adults. Am J Clin Nutr. 2016;103(2):465–473. doi: 10.3945/ajcn.115.112359.

Nicastro H, Artioli GG, Costa Ados S, et al. An overview of the therapeutic effects of leucine supplementation on skeletal muscle under atrophic conditions. Amino Acids. 2011;40:287–300. doi: 10.1007/s00726-010-0636-x.

Cynober L, De Bandt JP, Moinard C. Leucine and citrulline: two major regulators of protein turnover. World Rev Nutr Diet. 2013;105:97–105. doi: 10.1159/000341278.

Hernandez-Garcia AD, Columbus DA, Manjarin R, et al. Leucine supplementation stimulates protein synthesis and reduces degradation signal activation in muscle of newborn pigs during acute endotoxemia. Am J Physiol Endocrinol Metab. 2016;311(4):E791–801. doi: 10.1152/ajpendo.00217.

Drummond MJ, Reidy PT, Baird LM, Dalley BK, Howard MT. Leucine differentially regulates gene-specific translation in mouse skeletal muscle. J Nutr. 2017;147:1616–1623. doi: 10.3945/jn.117.251181.

Pereira MG, Silva MT, da Cunha FM, Moriscot AS, Aoki MS, Miyabara EH. Leucine supplementation improves regeneration of skeletal muscles from old rats. Exp Gerontol. 2015;72:269–277. doi: 10.1016/j.exger.2015.10.006.

Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol. 2006;291:E381–E387. doi: 10.1152/ajpendo.00488.2005.

Deutz NE, Safar A, Schutzler S, et al. Muscle protein synthesis in cancer patients can be stimulated with a specially formulated medical food. Clin Nutr. 2011;30:759–768. doi: 10.1016/j.clnu.2011.05.008.

Holecek M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J Cachexia Sarcopenia Muscle. 2017;8(4):529–541. doi: 10.1002/jcsm.12208.

Rosenthal MD, Rosenthal CM, Moore FA, Martindale RG. Persistent immunosuppression, inflammation, catabolism syndrome and diaphragmatic dysfunction. Curr Pulmonol Rep. 2017;6(1):54–57. doi: 10.1007/s13665-017-0166-z.

Delphan M, Lin T, Liesenfeld DB, et al. Associations of branched chain amino acids with parameters of energy balance and survival in colorectal cancer patients: results from the ColoCare Study. Metabolomics. 2018;2018(14):22. doi: 10.1007/s11306-017-1314-8

Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). J Nutr Biochem. 1997;8:300–311. doi: 10.1016/S0955-2863(97)00048-X

Smith KL, Tisdale MJ. Increased protein degradation and decreased protein synthesis in skeletal muscle during cancer cachexia. Br J Cancer. 1993;67:680–685. doi: 10.1038/bjc.1993.126.

Bear DE, Langan A, Dimidi E, et al. β-Hydroxy-β-methylbutyrate and its impact on skeletal muscle mass and physical function in clinical practice: a systematic review and meta-analysis. Am J Clin Nutr. 2019;109:1119–1132. doi: 10.1093/ajcn/nqy373.

Mitchell WK, Phillips BE, Hill I, et al. Human skeletal muscle is refractory to the anabolic effects of leucine during the postprandial muscle-full period in older men. Clin Sci. 2017;131:2643–2653. doi: 10.1042/CS20171230.

De Bandt JP. Leucine and mammalian target of rapamycin-dependent activation of muscle protein synthesis in aging. J Nutr. 2016;146:2616S–2624S. doi: 10.3945/jn.116.234518.

Bergstrom J, Furst P, Noree LO, Vinnars E. Intracellular free amino acid concentration in human muscle tissue. J Appl Physiol. 1974;36:693–697. doi: 10.1152/jappl.1974.36.6.693.

Thomas DT, Erdman KA, Burke LM. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Acad Nutr Diet. 2016;116:501–528. doi: 10.1016/j.jand.2015.12.006.

Gualano B, Rawson ES, Candow DG, Chilibeck PD. Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain. Amino Acids. 2016;48:1793–1805. doi: 10.1007/s00726-016-2239-7.

Rondanelli M, Faliva M, Monteferrario F, et al. Novel insights on nutrient management of sarcopenia in elderly. Biomed Res Int. 2015;2015:524948. doi: 10.1155/2015/524948.

Pappalardo G, Almeida A, Ravasco P. Eicosapentaenoic acid in cancer improves body composition and modulates metabolism. Nutrition. 2015;31:549–555. doi: 10.1016/j.nut.2014.12.002.

Rosenthal MD, Patel J, Staton K, Martindale RG, Moore FA, Upchurch GR, Jr. Can specialized pro-resolving mediators deliver benefit originally expected from fish oil? Curr Gastroenterol Rep. 2018;20(9):40. doi: 10.1007/s11894-018-0647-4.

Dalli J, Colas RA, Serhan CN. Novel n-3 immunoresolvents: structures and actions. Sci Rep. 2013;3:1940. doi: 10.1038/srep01940.

Dalli J, Colas RA, Quintana C, et al. Human sepsis eicosanoid and proresolving lipid mediator temporal profiles: correlations with survival and clinical outcomes. Crit Care Med. 2017;45(1):58–68. doi: 10.1097/CCM.0000000000002014.

Serhan CN, Dalli J, Karamnov S, et al. Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J. 2012;26(4):1755–1765. doi: 10.1096/fj.11-201442.

Chiang N, Serhan CN. Structural elucidation and physiologic functions of specialized pro-resolving mediators and their receptors. Mol Aspects Med. 2017;58:114–129. doi: 10.1016/j.mam.2017.03.005.

Rondanelli M, Klersy C, Terracol G, et al. Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. Am J Clin Nutr. 2016;103(3):830–840. doi: 10.3945/ajcn.115.113357.

Braun AB, Gibbons FK, Litonjua AA, Giovannucci E, Christopher KB. Low serum 25-hydroxyvitamin D at critical care initiation is associated with increased mortality. Crit Care Med. 2012;40(1):63–72. doi: 10.1097/CCM.0b013e31822d74f3.

Higgins DM, Wischmeyer PE, Queensland KM, Sillau SH, Sufit AJ, Heyland DK. Relationship of vitamin D deficiency to clinical outcomes in critically ill patients. J Parenter Enter Nutr. 2012;36(6):713–720. doi: 10.1177/0148607112444449.

McKinney JD, Bailey BA, Garrett LH, Peiris P, Manning T, Peiris AN. Relationship between vitamin D status and ICU outcomes in veterans. J Am Med Dir Assoc. 2011;12(3):208–211. doi: 10.1016/j.jamda.2010.04.004.

Bauer JM, Verlaan S, Bautmans I, et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double blind, placebo-controlled trial. J Am Med Dir Assoc. 2015;16:740–747. doi: 10.1016/j.jamda.2015.05.021.

Rosenthal MD, Kamel AY, Rosenthal CM, Brakenridge S, Croft CA, Moore FA. Chronic critical illness: Application of what we know. Nutr Clin Pract. 2018;33:39–45. doi: 10.1002/ncp.10024.



How to Cite

Chuklin, S., Chuklin, S., & Shershen, G. (2021). Persistent inflammation, immunosuppression and catabolism syndrome: mechanisms of sarcopenia and ways of correction. EMERGENCY MEDICINE, 16(7-8), 110–117.



Scientific Review