Method of estimating the thoracic fluid content, based on anthropometric data of the patient and determining the electrical impedance of the chest

Authors

  • S.V. Kursov Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine
  • V.V. Nikonov Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine
  • O.V. Biletskyi Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine
  • V.M. Zagurovskyi Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine
  • A.E. Feskov Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine

DOI:

https://doi.org/10.22141/2224-0586.17.1.2021.225723

Keywords:

electrical impedance of biological tissues, impedan­cemetry, thoracic fluid content, acute respiratory failure

Abstract

Background. Determination of the thoracic fluid content in the dynamics is becoming increasingly common in clinical ­trials and is a promising method for monitoring patients of intensive care units of various profiles. The most affordable and cost-effective methods for monitoring the amount of fluid in the chest at present are those based on measuring the electrical impedance of the chest when scanning it with high-frequency current. These techniques provide good repeatability of results, and are virtually independent of the operator. The purpose of the work is to develop own original technique for determining the thoracic fluid content. Materials and methods. The electric chest impedance was measured when scanning the chest with an electric current of 32 KHz using two pairs of band electrodes according to V. Kubicek. The circumference of the base of the neck and chest at the site of application of the electrodes was measured carefully. The distance between electrodes was also determined. Chest volume was calculated based on the truncated cone model. The thoracic fluid content was evaluated by the equation: V = γν/Z(R – r), where V is the volume of fluid in the chest; γ is the average electrical blood conductivity; ν is the volume of the thorax, calculated on the model of a truncated cone; Z is the value of the electrical impedance of the chest; R is the radius of the thorax, and r is the radius of the base of the neck. The difference between them in this equation should reduce the error associated with the presence in the thorax of connective tissue that has an electrical conductivity different from the electrical conductivity of the blood. Studies were performed in both apparently healthy volunteers and in polytrauma patients with thoracic injury and signs of acute respiratory failure. Results. Our observations showed that the amount of fluid in the chest, calculated by our method, normally approaches 60 % — 59 ± 2 % of the chest volume, calculated on the base of the truncated cone model. In the most severe cases of thoracic injury, the relative fluid content in the chest of victims reached 75–80 %, and the amount of fluid in the chest, expressed in conventional units per 1/KΩ, was at the level of 45–50 conventional 1/КΩ. These events were associated with the presence of a clinical picture of acute respiratory distress syndrome degree 2, and all patients were on mandatory pulmonary mechanical ventilation with the creation of constant positive airway pressure and respiratory plateau at the level of 25–27 cm H2O. The positive dynamics of the process was associated with an increase in the oxygenation index, the ability to transfer patients to sponta­neous breathing. At the same time, the relative thoracic fluid content in patients decreased to 60–67 %, and in those who needed continued mechanical ventilation — to 68–73 %. The thoracic fluid content, expressed in conventional units per 1/KΩ, with rapid improvement and the possibility of discontinuation of ventilation was 37–42 conditional 1/KΩ, and if it was necessary to continue mechanical ventilation — 43–46 conditional 1/KΩ. The results of determining the thoracic fluid content by the authors’ method better corresponded to the clinical picture of thoracic trauma, the severity of the manifestations of acute respiratory distress syndrome than the noninvasive cardiac output monitoring. Conclusions. The developed method for determining the thoracic fluid content can be applied in researches and clinical practice during intensive care of patients with acute respiratory distress syndrome.

Downloads

Download data is not yet available.

References

Fathy S., Hasanin A.M., Raafat M., Mostafa M.M.A., Fetouh A.M., Elsayed M. et al. Thoracic fluid content: a novel parameter for predicting failed weaning from mechanical ventilation. Journal of Intensive Care. 2020. Vol. 8. Article 20. Available from: https://jintensivecare.biomedcentral.com/articles/10.1186/s40560-020-00439-2.

Yoon T.-G., Jang K., Oh C.-S., Kim S.-H., Kang W.-S. The Correlation between the Change in Thoracic Fluid Content and the Change in Patient Body Weight in Fontan Procedure. Hindawi: BioMed Research International. 2018. Vol. 2018. Article ID3635708. Avai­lable from: https://www.hindawi.com/journals/bmri/2018/3635708/

Dovancescu S., Saporito S., Herold I.H.F., Korsten H.H.M., Aarts R.M., Mischi M. Monitoring thoracic fluid content using bioelectrical impedance spectroscopy and Cole modeling. Journal of Electrical Bioimpedance. 2017. Vol. 8. № 1. Р. 107-115. Available from: https://content.sciendo.com/view/journals/joeb/8/1/article-p107.xml?language=en&tab_body=article_recommendations.

Powers K.A., Dhamoon A.S. Physiology, Pulmonary, Ventilation and Perfusion. StatPearls [Last Update: April 6, 2019] URL: https://www.ncbi.nlm.nih.gov/books/NBK539907/

Siddall E., Khatri M., Radhakrishnan J. Capillary leak syndrome: etiologies, pathophysiology, and management. Kidney International. 2017. Vol. 92. № 1. Р. 37-46. URL: https://www.kidney-international.org/article/S0085-2538 (17)30073-X/fulltext.

Barker K.R., Conroy A.L., Hawkes M., Murphy H., Pandey P., Kain K.C. Biomarkers of hypoxia, endothelial and circulatory dysfunction among climbers in Nepal with AMS and HAPE: a prospective case-control study. Journal of Travel Medicine. 2016. Vol. 23. № 3. taw005. URL: https://academic.oup.com/jtm/article/23/3/taw005/2580592.

Tkacs N.C., Porter C.S., Barker N.A. Lungs. In Advanced Physiology & Pathophysiology Essentials for Clinical Practice. Edited by N.C. Tkacs, L.L. Herrmann, R.L. Johnson. New York: Springer Publishing Company, 2020. P. 389-426. URL: https://books.google.com.ua/books?id=El2jDwAAQBAJ&pg=PA424&lpg=PA424&dq=systemic+hypoxia+increases+the+permeability+of+pulmonary+capillaries.

Chioncel O., Collins S.P., Ambrosy A.P., Gheorghiade M., Filippatos G. Pulmonary Oedema — Therapeutic Targets. Cardiac. Failure Review. 2015. Vol. 1. № 1. Р. 38-45. doi: 10.15420/CFR.2015.01.01.38.

Khosravi P.M., Reuter D., Kassiri N., Hashemian S.M. Extravascular lung water measurement in critically ill patients. Biomedical & Biotechnology Research Journal. 2018. Vol. 2. № 4. Р. 237-241. URL: http://www.bmbtrj.org/article.asp?issn=2588-9834;year=2018;volume=2;issue=4;spage=237;epage=241;aulast=Khosravi.

Jozwiak M., Teboul J.-L., Monnet X. Extravascular lung water in critical care: recent advances and clinical applications. Annals of Intensive Care. 2015. Vol. 5. Article 38. URL: https://annalsofintensivecare.springeropen.com/articles/10.1186/s13613-015-0081-9.

Cheung H., Dong Q., Dong R., Yu B. Correlation of cardiac output measured by non-invasive continuous cardiac output monito­ring (NICOM) and thermodilution in patients undergoing off-pump coronary artery bypass surgery. Journal of Anesthesia. 2015. Vol. 29. P. 416-420.URL: https://link.springer.com/article/10.1007/s00540-014-1938-z.

García X., Simon P., Guyette F.X., Ramani R., Alvarez R., Quintero J. et al. Noninvasive Assessment of Acute Dyspnea in the ED. Chest. 2013. Vol. 144. № 2. Р. 610-615. DOI: https://doi.org/10.1378/chest.12-1676.

Narula J., Kiran U., Malhotra Kapoor P., Choudhury M., Rajashekar P., Kumar C.U. Assessment of changes in hemodyna­mics and intrathoracic fluid using electrical cardiometry during autologous blood harvest. Journal of Cardiothoracic & Vascular Anesthesia. 2017. Vol. 31. P. 84-89. URL: https://www.jcvaonline.com/article/S1053-0770 (16)30296-8/fulltext.

Hammad Y., Hasanin A., Elsakka A., Refaie A., Abdelfattah D., Rahman S.A. et al. Thoracic fluid content: a novel parameter for detection of pulmonary edema in parturients with preeclampsia. Journal of Clinical Monitoring & Computing. 2019. Vol. 33. P. 413-418. URL: https://doi.org/10.1007/s10877-018-0176-6.

Kubicek W.G., Patterson R.P., Witsoe D.A. Impedance Cardio­graphy as a Noninvasive Method of Monitoring Cardiac Function and Other Parameters of the Cardiovascular System. Annals of the New York Academy of Sciences. 2006. Vol. 170. № 2. Р. 724-732. URL: https://www.researchgate.net/publication/229747174_Impedance_Cardio­graphy_as_a_Noninvasive_Method_of_Monitoring_Cardiac_Function_and_Other_Parameters_of_the_Cardiovascular_System.

Гуревич М.И., Соловьев А.И., Литовченко Л.П., Доломан Л.Б. Импедансная реоплетизмография. Киев: Наукова думка, 1982. 176 с.

Курсов С.В., Білецький О.В., Шарлай К.Ю. Церебральна імпедансна плетизмографія, реоенцефалографічний моніторинг та спектральна імпедансметрія в інтенсивній терапії критичних станів. Харків: ТОВ «Планета-Принт», 2018. 116 с.

Sanidas E.A., Grammatikopoulos K., Anastasiadis G., Papadopoulos D., Daskalaki M., Votteas V. Thoracic Fluid Content and Impedance Cardiography: A Novel and Promising Noninvasive Method for Assessing the Hemodynamic Effects of Diure­tics in Hypertensive Patients. Hellenic Journal of Cardiology. 2009. Vol. 50. № 6. Р. 465-471. URL: https://www.researchgate.net/publication/40035713_Thoracic_Fluid_Content_and_Impedance_Cardiography_A_Novel_and_Promising_Noninvasive_Method_for_Assessing_the_Hemodynamic_Effects_of_Diu.

MEDIS. Products: Devices for Patient Monitoring and Cardio-Vascular Diagnosis. ICG: Impedance Cardiography. Medizinische Messtechnik GmbH [cited Sep 21, 2020]. URL: https://medis.company/cms/index.php?page=icg-impedance-cardiography.

SonoSite Inc. BioZ Cardio Profile: A new generation of continuous, noninvasive, hemodynamic monitoring for the hospital [cited Sep. 21, 2020]. URL: https://www.sonosite.com/sites/default/files/1173_BioZ_Cardio_Profile_Advantage_Sheet_v9.pdf.

Mahmoud K.H., Mokhtar M.S., Soliman R.A., Khaled M.M. Non invasive adjustment of fluid status in critically ill patients on renal replacement therapy. Role of Electrical Cardiometry. The Egyptian Journal of Critical Care Medicine. 2016. Vol. 4. № 2. Р. 57-65. URL: https://www.sciencedirect.com/science/article/pii/S2090730316300263.

Sanders M., Servaas S., Slagt C. Accuracy and precision of non-invasive cardiac output monitoring by electrical cardiometry: a systematic review and meta-analysis. Journal of Clinical Monitoring and Computing. 2020. Vol. 34. P. 433-460. URL: https://link.sprin­ger.com/article/10.1007/s10877-019-00330-y.

Naranjo-Hernández D., Reina-Tosina J., Roa M.R., Barbarov-Rostán G., Aresté-Fosalba N., Lara-Ruiz A. et al. Smart Bioimpedance Spectroscopy Device for Body Composition Estimation. Sensors. 2019. Vol. 20. P. 70. doi: 10.3390/s20010070.

Білецький О.В., Курсов С.В. Оцінка вмісту рідини в грудній клітці у пацієнтів із забоєм легень на тлі політравми та його зміни під впливом заходів інтенсивної терапії. Проблеми безперервної медичної освіти та науки. 2019. № 1 (33). С. 40-48.

Білецький О.В., Курсов С.В. Ефект застосування магнію сульфату з метою стабілізації гемодинаміки на ранньому шпитальному етапі у постраждалих з міокардіальною контузією на тлі політравми. Вісник проблем біології і медицини. 2019. № 1. Випуск 1 (148). С. 96-101.

Курсов С.В., Білецький О.В. Оцінка вмісту рідини у грудній клітці у постраждалих із забоєм легень на тлі політравми за допомогою визначення електричного грудного імпедансу. Медицина невідкладних станів. 2019. № 2 (97). Т. 15. С. 223.

Published

2021-09-29

How to Cite

Kursov, S., Nikonov, V., Biletskyi, O., Zagurovskyi, V., & Feskov, A. (2021). Method of estimating the thoracic fluid content, based on anthropometric data of the patient and determining the electrical impedance of the chest. EMERGENCY MEDICINE, 17(1), 59–66. https://doi.org/10.22141/2224-0586.17.1.2021.225723

Issue

Section

Original Researches

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>