Influence of Glucose Homeostasis Alteration on the Electrolyte and Acid-Base Balance in Patients with Diabetes Mellitus

Authors

  • O.V. Ivaniushko Lviv National Medical University named after Danylo Halytskyi, Lviv, Ukraine

DOI:

https://doi.org/10.22141/2224-0586.8.79.2016.90369

Keywords:

diabetes mellitus, homeostasis, glucose, electrolyte shifts, acid-base status

Abstract

Despite the success of the treatment of diabetes mellitus, the incidence of diabetic ketoacidosis in recent years has not decreased. Its clinical manifestations Dreshfeld first described in 1886. Insulin began to be used in 1922. Mortality of this complication was 100 %. Widespread implementation of insulin therapy into the clinical practice reduced mortality by 30 %, and with improvement of treatment, including infusion therapy, there was a further reduction. The level of mortality of patients with diabetic ketoacidosis remains high (about 5 % in specialized centers). Prediction of the disease much worsens with age, in the development of coma and hypotension. The prevalence of diabetes mellitus is growing rapidly and currently ranges from 20 to 50 % of new-onset disease in young people. Violations of electrolytes are frequent in patients with this disease and may be the result of altered distribution of electrolytes associated with hyperglycemia-induced osmotic fluid shifts or general shortages caused by osmotic diuresis. Complications from damage to the target organs and therapies used in the treatment of diabetes can also contribute to electrolyte disturbances. We highlight the ways, in which specific electrolytes may be influenced by dysregulation in glucose homeostasis. High or normal plasma sodium concentration in the presence of hyperglycemia indicates a clinically significant deficit of the total body fluid. Sodium correction in patients with glycemia helps to evaluate shortage of sodium and water, and ensure adequate assessment required for tonicity during the course of rehydration therapy. Because children with diabetic ketoacidosis are at particularly high risk of such terrible complications, as swelling of the brain, then to some extent hypernatremia is acceptable during treatment to minimize this complication. Insulin deficiency, which often occurs in type 1 diabetes mellitus, is an important factor of potassium output from the cells. Changes in potassium level, caused by metabolic acidosis, are more significant in mineral acidosis (hyperchloremic, non-anion gap acidosis) than in the organic acidosis (large anion gap acidosis), which is present in diabetic ketoacidosis. In diabetic patients receiving non-selective β-blockers, increased adrenergic activity can exacerbate hyperkalemia, because unopposed α-receptor stimulation, promotes the release of potassium from the cells. Ketoacidosis occurs when the rate, at which hepatic ketoacid is generated, exceeds peripheral utilization and the concentration of ketoacid in the blood increases. Normalization of acid-base balance is made within a few days, as the correction of bicarbonate deficit occurs through its regeneration by kidneys. Patients with primary kidney diabetic ketoacidosis are not involved (with their normal function). Kidney compensate by higher ammonia discharge. Urinary osmolarity gap is measured in order to find out whether there is a corresponding increase in the excretion of ammonia, which leads to violations in acid-base status. Low urinary osmolarity gap in patients with persistent hyperchloremic acidosis provides leads to tubular dysfunction. Despite recent advances that allowed direct assessment of the levels of β-hydroxybutyrate, determining the concentration of ketone bodies often can not fully explain the increase in anion gap and in many patients may contribute to hyperlactatemia. Lactate level may be increased in response to increased adrenergic activity, even in the absence of tissue hypoperfusion. Chronic hyperglycemia leads to the development of «carbonyl stress» and accumulation of toxic dicarbonyl compounds, such as methyl glyoxal, etc. Epidemiological studies suggest that low magnesium intake is associated with increased risk of diabetes, while higher magnesium intake is associated with lower risk of developing diabetes. In patients with diabetic ketoacidosis, osmotic diuresis due to poor glycemic control leads to renal loss of magnesium. Hypomagnesemia can cause hypocalcemia, because magnesium deficiency may lead to lower parathyroid hormone release. Randomized studies of phosphate therapy in patients with diabetic ketoacidosis did not establish that this therapy provides clinical benefit. The dysregulation of glucose homeostasis leads to many direct and indirect effects on electrolyte and acid-base balance. Since the high prevalence of diabetes ensures that clinicians of every medical specialty will interact with these patients, familiarity with related electrolyte abnormalities is important.

Downloads

Download data is not yet available.

References

Adrogué H.J., Eknoyan G., Suki W.K. Diabetic ketoacidosis: role of the kidney in the acid-base homeostasis re-evaluated // Kidney Int. — 1984. — 25. — 591-8.

Alterations in nonenzymatic biochemistry inuremia: origin and significance of «carbonyl stress» in long-term uremic complications / [T. Miyata, C. van Ypersele de Strihou, K. Kurokawa et al.] // Kidney Int. — 1999. — № 2. — P. 389-399.

Aronson P.S., Giebisch G. Effects of pH on potassium: new explanations for old observations // J. Am. Soc. Nephrol. — 2011. — 22. — 1981-9.

Barbagallo M., Dominguez L.J. Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance // Arch. Biochem. Biophys. — 2007. — 458. — 40-7.

Beukhof C.M., Hoorn E.J., Lindemans J., Zietse R. Novel risk factors for hospital ac-quired hyponatraemia: a matched casecontrol study // Clin. Endocrinol. (Oxf.). — 2007. — 66. — 367-72.

Bolli G., Cartechini M.G., Compagnucci P. et al. Adrenergic activity and glycometa-bolic compensation in patients with diabetes mellitus // Minerva Med. — 1979. — 70. — 3783-95.

Bustamante M., Hasler U., Kotova O. et al. Insulin potentiates AVP-induced AQP2 expression in cultured renal collecting duct principal cells // Am. J. Physiol. Renal. Physiol. — 2005. — 288. — 334-344.

Christensen N.J. Plasma norepinephrine and epinephrine in untreated diabetics, during fasting and after insulin administration // Diabetes. — 1974. — 23. — 1-8.

Chua H.R., Schneider A., Bellomo R. Bicarbonate in diabetic ketoacidosis — a systematic review // Ann. Intensive Care. — 2011. — 1. — 23.

Cox K., Cocchi M.N., Salciccioli J.D., Carney E., Ho­well M., Donnino M.W. Prevalence and significance of lactic acidosis in diabetic ketoacidosis // J. Crit. Care. — 2012. — 27. — 132-7.

Elisaf M.S., Tsatsoulis A.A., Katopodis K.P., Siamopoulos K.C. Acid-base and electrolyte disturbances in patients with diabetic ketoacidosis // Diabetes Res. Clin. Pract. — 1996. — 34. — 23-7.

Epstein F.H., Rosa R.M. Adrenergic control of serum potassium // N. Engl. J. Med. — 1983. — 309. — 1450.

Fisher J.N., Kitabchi A.E. A randomized study of phosphate therapy in the treatment of diabetic ketoacidosis // J. Clin. Endocrinol. Metab. — 1983. — 57. — 177-80.

Foster D.W., McGarry J.D. The metabolic derangements and treatment of diabetic ketoacidosis // N. Engl. J. Med. — 1983. — 309. — 159-69.

Franks M., Berris R.F. et al. Metabolicstudies in diabetic acidosis; the effect of the administration of sodium phosphate // Arch. Intern. Med. (Chic.). — 1948. — 81. — 42-55.

Goguen J., Gilbert J. Hyperglycemic emergencies in adults // Can. J. Diabetes. — 2013. — 37. — 72-76.

Goldstein D.A., Haldimann B., Sherman D., Norman A.W., Massry S.G. Vitamin D metabolites and calcium metabolism in patients with nephrotic syndrome and normal renal function // J. Clin. Endocrinol. Metab. — 1981. — 52. — 116-21.

Halperin M.L., Cheema-Dhadli S. Renal and hepatic aspects of ketoacidosis: a quantitative analysis based on energy turno­ver // Diabetes Metab. Rev. — 1989. — 5. — 321-36.

Halperin M.L., Kamel K.S. Some observations on the clinical approach to metabolic acidosis // J. Am. Soc. Nephrol. — 2010. — 21. — 894-7.

Halperin M.L., Margolis B.L., Robinson L.A., Halperin R.M, West M.L., Bear R.A. The urine osmolal gap: a clue to estimateurine ammonium in «hybrid» types of metabolic acidosis // Clin. Invest. Med. — 1988. —11. — 198-202.

Halperin M.L., Vinay P., Gougoux A., Pichette C., Jungas R.L. Regulation of the maxi-mum rate of renal ammoniagenesis in the acidotic dog // Am. J. Physiol. — 1985. — 248. — 607-615.

Hillier T.A., Abbott R.D., Barrett E.J. Hyponatremia: evaluating the correction factor for hyperglycemia // Am. J. Med. — 1999. — 106. — 399-403.

Hoorn E.J., Nelson J.H., McCormick J.A., Ellison D.H. The WNK kinase network regulating sodium, potassium, and blood pressure // J. Am. Soc. Nephrol. — 2011. — 22. — 605-14.

Husted F.C., Nolph K.D., Maher J.F. NaHCO3 and NaC1 tolerance in chronic renal failure // J. Clin. Invest. — 1975. — 56. — 414-9.

Hyperglycemia and glycation in diabetic complications / [A. Fegre-Salvayre, R. Salvayre, N. Augé et al.] // Antioxid. Redox Signal. —2009. — № 11. — P. 3071-3109.

Inzucchi S.E., Lipska K.J., Mayo H., Bailey C.J., ­McGuire D.K. Metformin in patients with type 2 diabetes and kidney disease: a systematic review // JAMA. — 2014. — 312. — 2668-75.

Kamel K.S., Halperin M.L. Acid-base problems in diabetic ketoacidosis // N. Engl. J. Med. — 2015. — 372. — 546-54.

Karet F.E. Mechanisms in hyperkalemic renal tubular acidosis // J. Am. Soc. Nephrol. — 2009. — 20. — 251-4.

Kebler R., McDonald F.D., Cadnapaphornchai P. Dynamic changes in serum phosphorus levels in diabetic ketoacidosis // Am. J. Med. — 1985. — 79. — 571-6.

Kitabchi A.E., Umpierrez G.E., Miles J.M., Fisher J.N. Hyperglycemic crises in adult patients with diabetes // Diabetes Care. — 2009. — 32. — 1335-43.

Lalau J.D., Andrejak M., Morinière P. et al. Hemodialysis in the treatment of lactic acidosis in diabetics treated by metformin: a study of metformin elimination // Int. J. Clin. Pharmacol. Ther. Toxicol. — 1989. — 27. — 285-8.

Liamis G., Liberopoulos E., Barkas F., Elisaf M. Spurious electrolyte disorders: a diagnostic challenge for clinicians // Am. J. Nephrol. — 2013. — 38. — 50-7.

Lu J., Zello G.A., Randell E., Adeli K., Krahn J., Meng Q.H. Closing the anion gap: contribution of D-lactate to diabetic ketoacidosis // Clin. Chim. Acta. — 2011. — 412. — 286-91.

Mahler S.A., Conrad S.A., Wang H., Arnold T.C. Resuscitation with balanced electrolyte solution prevents hyperchloremic metabolic acidosis in patients with diabetic ketoacidosis // Am. J. Emerg. Med. — 2011. — 29. — 670-4.

McNair P., Christensen M.S., Madsbad S., Christiansen C., Transbøl I. Hypoparathyroidism in diabetes mellitus // Acta Endocrinol. (Copenh.) — 1981. — 96. — 81-6.

National diabetes statistics report: estimates of diabetes and its burden in the United States, 2014. — Atlanta: Centers for Disease Control and Prevention, 2014.

Nguyen T.Q., Maalouf N.M., Sakhaee K., Moe O.W. Comparison of insulin action on glucose versus potassium uptake in humans // Clin. J. Am. Soc. Nephrol. — 2011. — 6. — 1533-9.

Nyenwe E.A., Kitabchi A.E. Evidencebased management of hyperglycemic emergencies in diabetes mellitus // Diabetes Res. Clin. Pract. — 2011. — 94. — 340-51.

Nyenwe E.A., Razavi L.N., Kitabchi A.E., Khan A.N., Wan J.Y. Acidosis: the prime determinant of depressed sensorium in diabetic ketoacidosis // Diabetes Care. — 2010. — 33. — 1837-9.

Oh M.S., Carroll H.J., Uribarri J. Mechanism of normochloremic and hyperchloremic acidosis in diabetic ketoacidosis // Nephron. — 1990. — 54. — 1-6.

Palmer B.F., Gates J.R., Lader M. Causes and management of hyponatremia // Ann. Pharmacother. — 2003. — 37. — 1694-702.

Palmer B.F. A physiologic-based approach to the evaluation of a patient with hyperkalemia // Am. J. Kidney Dis. — 2010. — 56. — 387-93.

Palmer B.F. A physiologic-based approach to the evaluation of a patient with hypokalemia // Am. J. Kidney Dis. — 2010. — 56. — 1184-90.

Palmer B.F. Managing hyperkalemia caused by inhibitors of the rennin-angiotensin-aldosterone system // N. Engl. J. Med. — 2004. — 351. — 585-92.

Palmer B.F. Metabolic complications associated with use of diuretics // Semin. Nephrol. — 11. — 31. — 542-52.

Palmer B.F. Regulation of potassium homeostasis // Clin. J. Am. Soc. Nephrol. — 2015. — 10. — 1050-60.

Palmer B.F. Renal dysfunction complicating the treatment of hypertension // N. Engl. J. Med. — 2002. — 347. — 1256-61.

Perazella M.A. Proton pump inhibitors and hypomagnesemia: a rare but serious complication // Kidney Int. — 2013. — 83. — 553-6.

Pham P.C., Pham P.M., Pham S.V., Miller J.M., Pham P.T. Hypomagnesemia in patients with type 2 diabetes // Clin. J. Am. Soc. Nephrol. — 2007. — 2. — 366-73.

Romani A.M. Cellular magnesium homeostasis // Arch. Biochem. Biophys. — 2011. — 512. — 1-23.

Roscoe J.M., Halperin M.L., Rolleston F.S., Goldstein M.B. Hyperglycemia-inducedhyponatremia: metabolic considerations in calculation of serum sodium depression // Can. Med. Assoc. J. — 1975. — 112. — 452-3.

Schwarz P., Sørensen H.A., Momsen G., Friis T., Transbøl I., McNair P. Hypocalcemia and parathyroid hormone responsiveness in diabetes mellitus: a tri-sodiumcitrate clamp study // Acta Endocrinol. (Copenh.). — 1992. — 126. — 260-3.

Seidowsky A., Nseir S., Houdret N., Fourrier F. Metformin-associated lactic acidosis: a prognostic and therapeutic study // Crit. Care Med. — 2009. — 37. — 2191-6.

Song J., Hu X., Riazi S., Tiwari S., Wade J.B., Ecelbar­ger C.A. Regulation of blood pressure, the epithelial sodium channel (ENaC), and other key renal sodium transporters by chronic insulin infusion in rats // Am. J. Physiol. Renal. Phy­siol. — 2006. — 290. — 1055-1064.

Song Y., Manson J.E., Buring J.E., Liu S. Dietary magnesium intake in relation to plasma insulin levels and risk of type 2 diabetes in women // Diabetes Care. — 2004. — 27. — 59-65.

Taylor W.H., Khaleeli A.A. Coincident diabetes mellitus and primary hyperparathyroidism // Diabetes Metab. Res. Rev. — 2001. — 17. — 175-80.

Turk Z. Glycotoxines, carbonyl stress and relevance to ­diabetes and its complications / Z. Turk // Physiol. Res. — 2010. — № 2. — P. 147-156.

Tzamaloukas A.H., Ing T.S., Elisaf M.S. et al. Abnormalities of serum potassium concen-tration in dialysis-associated hyperglycemia and their correction with insulin: a unique cli-nical/physiologic exercise in internal potassium balance // Int. Urol. Nephrol. — 2010. — 42. — 1015-22.

Published

2022-01-27

How to Cite

Ivaniushko, O. (2022). Influence of Glucose Homeostasis Alteration on the Electrolyte and Acid-Base Balance in Patients with Diabetes Mellitus. EMERGENCY MEDICINE, (8.79), 16–26. https://doi.org/10.22141/2224-0586.8.79.2016.90369

Issue

Section

Scientific Review